1.已知直線l過點P(2,3),且被兩條平行直線l1:3x+4y-7=0,l2:3x+4y+8=0截得的線段長為d.
(1)求d得最小值;并求直線的方程;
(2)當(dāng)直線l與x軸平行,試求d的值.

分析 (1)由兩平行線間的距離計算可得;
(2)可得直線l的方程為y=3,分別可得與兩直線的交點,可得d值.

解答 解:(1)當(dāng)直線l與兩平行線垂直時d最小,
此時d即為兩平行線間的距離,
∴d=$\frac{|-7-8|}{\sqrt{{3}^{2}+{4}^{2}}}$=3.
(2)當(dāng)直線l與x軸平行時,直線l的方程為y=3,
把y=3代入l1:3x+4y-7=0可得x=-$\frac{5}{3}$,
把y=3代入l2:3x+4y+8=0可得x=-$\frac{20}{3}$,
∴d=|-$\frac{20}{3}$-(-$\frac{5}{3}$)|=5.

點評 本題考查直線的一般式方程與平行關(guān)系,涉及距離公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)定義在(0,+∞)上的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞)都有f[f(x)-log2x]=3.若方程f(x)+f′(x)=a有兩個不同的實數(shù)根,則實數(shù)a的取值范圍是( 。
A.(1,+∞)B.(2+$\frac{1}{ln2}$,+∞)C.(3-$\frac{1}{2ln2}$,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a為實數(shù),若復(fù)數(shù)z=(a2-1)+(a+1)i為純虛數(shù),則$\frac{{a+{i^3}}}{1+i}$的值為( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在矩形ABCD中,AB=2,AD=1,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM,E為BD中點.

(Ⅰ)求證:CE∥平面AMD;
(Ⅱ)點E在線段DB上,且$\overrightarrow{DE}$=$\overrightarrow{EB}$,求三棱錐M-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.m為何實數(shù)時,復(fù)數(shù)z=(2+i)m2-3(i+1)m-2(1-i)是:
(1)實數(shù);
(2)虛數(shù);
(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,B=2A,∠ACB的平分線CD把△ABC的面積分成3:2兩部分,則cosA等于( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知某幾何體的三視圖和直觀圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.

(Ⅰ)求證:B1N⊥CN;
(Ⅱ)設(shè)M為AB中點,在棱BC上是否存在一點P,使MP∥平面B1CN?若存在,求$\frac{BP}{PC}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知某幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積是$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=a(lnx-1)-x.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0對任意x>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案