6.如圖,四棱錐P-ABCD的底面為正方形,PA⊥平面ABCD,PA=AD,點M、N分別在棱PD、PC上,且PC⊥平面AMN.
(Ⅰ)求二面角P-AM-N的余弦值;
(Ⅱ)求直線CD與平面AMN所成角的正弦值.

分析 (I)通過證明AM⊥平面PCD得出AM⊥PM,AM⊥MN,故而∠PMN為所求二面角的平面角,設(shè)PA=AD=2,利用勾股定理求出PD,PC,根據(jù)相似三角形轉(zhuǎn)化為求cos∠PCD;
(II)延長NM、CD交于點E,則∠CEN為所求角,利用相似三角形轉(zhuǎn)化為求sin∠CPD.

解答 解:(1)∵PC⊥平面AMN,AM?平面AMN,
∴PC⊥AM.
∵PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD,又CD⊥AD,PA,AD?平面PAD,PA∩AD=A,
∴CD⊥平面PAD,∵AM?平面PAD,
∴CD⊥AM.
又PC,CD?平面PCD,PC∩CD=C,
∴AM⊥平面PAD,∵PM?平面PCD,MN?平面PCD,
則AM⊥PM,AM⊥MN.
故∠PMN為二面角P-AM-N的平面角,
令PA=AD=2,則PD=2$\sqrt{2}$,∴PC=$\sqrt{P{D}^{2}+C{D}^{2}}$=2$\sqrt{3}$,
∵Rt△PMN∽Rt△PCD,∴∠PMN=∠PCD.
∴cos∠PMN=cos∠PCD=$\frac{CD}{PC}$=$\frac{\sqrt{3}}{3}$.
∴二面角P-AM-N的余弦值為$\frac{{\sqrt{3}}}{3}$.
(2)延長NM、CD交于點E,
∵PC⊥平面AMN,
∴∠CEN為直線CD與面AMN所成的角,
∵PD⊥CD,EN⊥PN,∴Rt△PCD∽Rt△ECN,
∴∠CEN=∠CPD.
∴sin∠CEN=sin∠CPD=$\frac{CD}{PC}$=$\frac{\sqrt{3}}{3}$,
即直線CD與平面AMN所成角正弦值為$\frac{{\sqrt{3}}}{3}$.

點評 本題考查了線面垂直的判定與性質(zhì),空間角的作法與計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+a|+|x-2|.
(Ⅰ)當(dāng)a=3時,求不等式f(x)≥7的解集;
(Ⅱ)若f(x)≤|x-4|的解集包含[0,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}是各項均不為零的等差數(shù)列,Sn為其前n項和,且an=$\sqrt{{S}_{2n-1}}$(n∈N*).若不等式λSn≥an-2016對任意n∈N*恒成立,則實數(shù)λ的最小值為$\frac{1}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,直四棱柱ABCD-A1B1C1D1的棱長均為2,∠BAD=60°,M為BB1的中點,Ol為上底面對角線的交點.
(Ⅰ)求證:O1M⊥平面ACM;
(Ⅱ)求AD1與平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若一個圓的圓心為拋物線y=$-\frac{1}{4}$x2的焦點,且此圓與直線3x+4y-1=0相切,則該圓的方程是x2+(y+1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓T:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點A(0,1),離心率e=$\frac{\sqrt{6}}{3}$,圓C:x2+y2=4,從圓C上任意一點P向橢圓T引兩條切線PM、PM.
(1)求橢圓T的方程;
(2)求證:PM⊥PN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.橢圓$\frac{x^2}{4}+{y^2}=1$的右焦點為F,直線x=t與橢圓相交于點A,B,若△FAB的周長等于8則△FAB的面積為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓E的中心在坐標(biāo)原點,焦點在坐標(biāo)軸上,且經(jīng)過A(-2,0),B(2,0),C(1,$\frac{3}{2}$).
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)經(jīng)過D(1,0)點的直線l交橢圓異于A、B的兩點M,N,試證明直線AM與BN的交點在一條定直線上,并求出該直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.要得到y(tǒng)=cos(2x-$\frac{π}{4}}$)的圖象,只要將y=cos2x的圖象( 。
A.向左平移$\frac{π}{8}$個單位B.向右平移$\frac{π}{8}$個單位
C.向左平移$\frac{π}{4}$個單D.向右平移$\frac{π}{4}$個單位

查看答案和解析>>

同步練習(xí)冊答案