15.甲、乙兩名射手一次射擊射中的得分為兩個相互獨立的隨機(jī)變量ξ和η,且ξ、η的分布列為:
ξ123
P0.30.10.6
η123
P0.30.40.3
則甲、乙兩人技術(shù)狀況怎樣(  )
A.甲好于乙B.乙好于甲C.一樣好D.無法確定

分析 由離散型隨機(jī)分布列的性質(zhì)求出期望和方差,由此能求出結(jié)果.

解答 解:由題意:E(ξ)=1×0.3+2×0.1+3×0.6=2.3,
D(ξ)=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81,
E(η)=1×0.3+2×0.4+3×0.3=2,
D(η)=(1-2)2×0.3+(2-2)2×0.4+(3-2)2×0.3=0.6.
甲的成績比乙的成績好,但乙比甲穩(wěn)定,
綜合來看,甲好于乙.
故選:A.

點評 本題考查甲、乙兩人技術(shù)狀況的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意離散型隨機(jī)變量的分布列和數(shù)學(xué)期望及方差的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在數(shù)列{an}中,a${\;}_{n+1}^{3}$-a${\;}_{n}^{3}$=-2,a1=5,記數(shù)列{a${\;}_{n}^{3}$}的前n項和為Sn,則Sn的最大值為( 。
A.S2B.S61C.S62D.S63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$\frac{sinx-cosx}{sinx+cosx}$=2,則sin4x+cos2x=$\frac{91}{100}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列說法:
①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;
②設(shè)有一個回歸方程y=3-5x,變量x增加一個單位時,y平均增加5個單位;
③某小組有3名男生和2名女生,從中任選2名同學(xué)去參加演講比賽;事件“至少1名女生”與事件“全是男生”是對立事件;
④第二象限的角都是鈍角.
以上說法正確的序號是①③(填上所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給出下列三個命題:
①若回歸直線的斜率估計值是1.23,樣本點的中心為(4,5),則回歸直線方程是$\stackrel{∧}{y}$=1.23x+0.08;
②若偶函數(shù)f(x)(x∈R)滿足f(x+2)=f(x),且x∈[0,1]時,f(x)=x,則方程f(x)=log3|x|有3個根;
③函數(shù)f(x)=($\frac{3}{2}$)x-sinx-1在(0,+∞)內(nèi)有且只有一個零點;
④已知函數(shù)f(x)=ax-lnx,且f(x1)=f(x2)=0,則$\frac{{x}_{1}+{x}_{2}}{2}$>e.
正確命題的序號是①③④(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.3與12的等比中項為±6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC的三個內(nèi)角A,B,C所對的邊分別是a,b,c,BC邊上的高為h,且h=a,則$\frac{c}$+$\frac{c}$+$\frac{{a}^{2}}{bc}$的最大值是( 。
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若不等式x2-2ax-b2+12≤0恰有一解,則ab的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.比較下列各組中兩個代數(shù)式的大小,寫出比較過程.
(Ⅰ)$\sqrt{11}$+$\sqrt{3}$與$\sqrt{9}$+$\sqrt{5}$;
(Ⅱ)x2+5x+16與2x2-x-11.

查看答案和解析>>

同步練習(xí)冊答案