13.若兩直線a、b與面α所成的角相等,則a與b的位置關(guān)系是平行或相交或異面.

分析 不妨設(shè)直線a、b與面α所成的角為0°,則a,b與平面α平行或a,b在平面α上,從而得出a,b的位置關(guān)系.

解答 解:假設(shè)直線a、b與面α所成的角均為0°,則a,b在平面α上,或a,b與α平行.
若a?α,b?α,則a,b平行或相交.
若a?α,b?α,則a∥b或a與b異面.
故答案為:平行或相交或異面.

點評 本題考查了空間直線的位置關(guān)系,直線與平面所成的角,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.(文科做)$\overrightarrow m$=($\sqrt{3}$sinx,cosx),$\overrightarrow n$=(3$\sqrt{3}$,1),且$\overrightarrow m$∥$\overrightarrow n$,則$\frac{sin2x}{1+cos2x}$的值為(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.從某學(xué)校的800名男生中隨機抽取50名測量身高,被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第七組的人數(shù)為3人.
(Ⅰ)求第六組的頻率;
(Ⅱ)若從身高屬于第六組和第八組的所有男生中隨機抽取2人,記他們的身高分別為x,y,事件E={|x-y|≤5},求事件E的頻率P(E);
(Ⅲ)對抽取的50名學(xué)生作調(diào)查,得到以下2×2列聯(lián)表:
喜歡打籃球不喜歡打籃球總計
身高超過175cm20626
身高不超175cm51924
總計252550
根據(jù)此表判斷是否有99.9%的把握認(rèn)為喜歡打籃球和身高超過175cm有關(guān)系.
參考公式::K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=(a+b)(c+d)(a+c)(b+d))
參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.7022.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正三角形ABC邊長為2,將它沿高AD翻折,使點B與點C間的距離為$\sqrt{3}$,此時四面體ABCD的外接球的表面積為7π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.A是半徑為2的圓O內(nèi)一個定點,P是圓O上的一個動點,線段AP的垂直平分線l與半徑OP相交于點Q,則|OQ|•|QA|的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如表為吸煙與患病之間的二聯(lián)表:
患。ㄈ藬(shù))不患病(人數(shù))合計
吸煙(人數(shù))aba+b
不吸煙(人數(shù))cdc+d
合計a+cb+dn=a+b+c+d
根據(jù)如表,回答下列問題:
(Ⅰ)試根據(jù)上表,用含a,b,c,d,n的式子表示人群中患病的頻率為$\frac{a+c}{n}$;在(a+b)個人中患病的頻數(shù)為$\frac{(a+b)(a+c)}{n}$;在(a+b)個人中不患病的頻數(shù)為$\frac{(a+b)(b+d)}{n}$;在(c+d)個人中患病的頻數(shù)為$\frac{(a+c)(c+d)}{n}$;在(c+d)人中不患病的頻數(shù)為$\frac{(b+d)(c+d)}{n}$.
(Ⅱ)根據(jù)χ2=$\frac{n(ad-bc)^{2}}{(a+b)(b+d)(c+d)(a+c)}$以及臨界值表,若a=40,b=10,c=30,d=20,能否有97.5%以上的把握認(rèn)為吸煙與患病有關(guān)?
P(χ2≥χ00.50.40.250.150.10
χ00.4550.7081.3232.7022.706
P(χ2≥χ00.050.0250.0100.0050.001
χ03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,邊長為2的正方形中有一封閉曲線圍成的陰影區(qū)域,在正方形中隨機撒100粒豆子,落在陰影區(qū)域內(nèi)的豆子共60粒,據(jù)此估計陰影區(qū)域的面積為$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線的參數(shù)方程為$\left\{\begin{array}{l}x=2-3t\\ y=1+2t\end{array}\right.$(t為參數(shù)),則直線的普通方程為( 。
A.2x+3y-7=0B.2x+3y-1=0C.2x-3y+1=0D.2x-3y+7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=a2-x+1(a>0,且a≠1)的圖象恒過定點A,點A在直線mx+ny=1(mn>0)上,求$\frac{1}{m}$+$\frac{1}{n}$的最小值.

查看答案和解析>>

同步練習(xí)冊答案