19.某小區(qū)有1000戶,各戶每月的周電量近似服從正態(tài)分布N(300,l02),則用電量在320度以上的戶數(shù)約為(  )
(參考數(shù)據(jù):若隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%,P(μ-3σ<ξ<μ+3σ)=99.74%.)
A.17B.23C.34D.46

分析 根據(jù)正態(tài)分布,求出μ=300,σ=10,在區(qū)間(280,320)的概率為0.954,由此可求用電量在320度以上的戶數(shù).

解答 解:由題意,μ=300,σ=10,在區(qū)間(280,320)的概率為0.954,
∴用電量在320度以上的概率為$\frac{1-0.954}{2}$=0.023,
∴用電量在320度以上的戶數(shù)估計約為1000×0.023=23,
故選:B.

點評 本題考查正態(tài)分布曲線的特點及曲線所表示的意義,考查學生的計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.設等比數(shù)列{an}的公比為q,其前n項之和為Sn,前n項之積為Tn,并且滿足條件:a1>1,a2016a2017>1,$\frac{{a}_{2016}-1}{{a}_{2017}-1}$<0,下列結論中正確的是( 。
A.q<0B.a2016a2018-1>0
C.T2016是數(shù)列{Tn}中的最大項D.S2016>S2017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知直線l與雙曲線x2-y2=1交于A、B兩點,若線段AB的中點為C(2,1),則直線l的斜率為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在直角坐標系xOy中,曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}x=\sqrt{2}cos(α+\frac{π}{4})\\ y=sin2α+1\end{array}\right.$(a為參數(shù));若以直角坐標系中的原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為;$ρ=\frac{m}{{2cos(θ+\frac{π}{6})+2sinθ}}$,(m為常數(shù))
(1)求曲線C1和曲線C2的直角坐標方程;
(2)若曲線C1和曲線C2有公共點,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合A={α|α=2kπ±$\frac{2π}{3}$,k∈Z},B={β|β=4kπ±$\frac{2π}{3}$,k∈Z},C={γ|γ=kπ±$\frac{2π}{3}$,k∈Z},則這三個集合之間的關系為( 。
A.A⊆B⊆CB.B⊆A⊆CC.C⊆A⊆BD.B⊆C⊆A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知點P(x,y)在圓x2+y2-6x-6y+14=0上
(1)求$\frac{y}{x}$的最大值和最小值;
(2)求x2+y2+2x+3的最大值與最小值;
(3)求x+y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知{an}滿足:${a_1}=a,{a_{n+1}}=\left\{\begin{array}{l}{a_n}-3({{a_n}>3,n∈{N^+}})\\ 4-{a_n}({{a_n}≤3,n∈{N^+}})\end{array}\right.$
(1)若$a=20\sqrt{2}$,求數(shù)列{an}的前30項和S30的值;
(2)求證:對任意的實數(shù)a,總存在正整數(shù)m,使得當n>m(n∈N+)時,an+4=an成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知在直角坐標系xOy中,設Q(x1,y1)是圓x2+y2=4上一個動點,點P(x12-y12,x1y1)的軌跡方程為C
(1)求曲線C的方程
(2)若直線l經(jīng)過點M(1,1),傾斜角為α,直線l與曲線C交于A,B兩點,求點M到A,B兩點的距離之積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在四邊形ABCD中,設$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$且$\overrightarrow{AC}=\overrightarrow a+\overrightarrow b$,$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$,則四邊形ABCD的形狀是( 。
A.梯形B.矩形C.菱形D.正方形

查看答案和解析>>

同步練習冊答案