14.一個幾何體的三視圖和尺寸如圖所示,則該幾何體的表面積為( 。
A.60B.84C.96D.120

分析 由三視圖還原原圖形,可得原幾何體是底面邊長6的正四棱錐,且側(cè)面斜高為5.然后由正方形面積及三角形面積公式求得該幾何體的表面積.

解答 解:由三視圖還原原幾何體,原幾何體是底面邊長6的正四棱錐,且側(cè)面斜高為5.
∴該幾何體的表面積為:
S=6×6+4×$\frac{1}{2}×6×5$=96.
故選:C.

點評 本題考查由三視圖求原幾何體的表面積,關鍵是由三視圖還原原圖形,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知不等式組$\left\{\begin{array}{l}x+y≤1\\ x-y≥-1\\ y≥0\end{array}\right.$所表示的平面區(qū)域為D,若直線y=kx-3與平面區(qū)域D有公共點,則k的取值范圍為(-∞,-3]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)求經(jīng)過兩條直線2x-y-3=0和4x-3y-5=0的交點,并且與直線2x+3y+5=0垂直的直線方程.
(2)已知在△ABC中,sin A+cos A=$\frac{1}{5}$.求tan A的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)y=$\frac{{lg\sqrt{x}}}{{lg(10{x^2})}}$,x∈(10-2,104)且x≠$\frac{{\sqrt{10}}}{10}$的值域為(-∞,$\frac{2}{9}$)∪($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F(xiàn)分別是AC,AD上的動點.且$\frac{AE}{AC}$=$\frac{AF}{AD}$=λ(0<λ<1).
(1)求證:不論λ取何值,總有EF∥平面BCD;
(2)求證:不論λ取何值,總有平面BEF⊥平面ABC;
(3)是否存在λ,使得平面BEF⊥平面ACD?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若$\overrightarrow{a}$=(-8,1),$\overrightarrow$=(3,4),則$\overrightarrow{a}$在$\overrightarrow$方向上的射影是-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設點P是曲線y=2x2上的一個動點,曲線y=2x2在點P處的切線為l,過點P且與直線l垂直的直線與曲線y=2x2的另一交點為Q,則PQ的最小值為$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)f(x)=$\frac{{-{x^2}+x-4}}{x}$(x>0)的最大值為-3,此時x的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在△ABC中,角A,B,C所對的邊分別是a,b,c,且a2=3bc.
(Ⅰ)若sinA=sinC,求cosA;
(Ⅱ)若a=3,求△ABC的周長的最小值..

查看答案和解析>>

同步練習冊答案