已知角θ的終邊上有一點P(x,-1)(x≠0),且tanθ=-x,
(1)求sinθ,cosθ的值.
(2)求
sin2θ+2sinθcosθ
3sin2θ+cos2θ
的值.
考點:同角三角函數(shù)基本關(guān)系的運用,任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:(1)依題意,可得tanθ=-
1
x
=-x,可求得x=±1,從而可得sinθ,cosθ的值;
(2)當x=1時,tanθ=-1時,將所求關(guān)系式中的“弦”化“切”;當x=-1時,tanθ=1,同理可求.
解答: 解:(1)∵θ的終邊過點(x,-1)(x≠0),
∴tanθ=-
1
x
,又tanθ=-x,∴x2=1,∴x=±1.
當x=1時,sinθ=-
2
2
,cosθ=
2
2

當x=-1時,sinθ=-
2
2
,cosθ=-
2
2

(2)當x=1時,tanθ=-1,
sin2θ+2sinθcosθ
3sin2θ+cos2θ
=
tan2θ+2tanθ
3tan2θ+1
=-
1
4

當x=-1時,tanθ=1,
sin2θ+2sinθcosθ
3sin2θ+cos2θ
=
tan2θ+2tanθ
3tan2θ+1
=
3
4
點評:本題考查同角三角函數(shù)基本關(guān)系的運用,考查轉(zhuǎn)化思想與運算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD的直觀圖是一個邊長為1的正方形,則原圖形的周長為(  )
A、2
2
B、6
C、8
D、4
2
+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(1,
3
2
)且e=
3
2
,
(1)求該橢圓的標準方程.
(2)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓恒有兩個交點A,B且OA⊥OB(O為坐標原點),求該圓的方程;
(3)設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與橢圓只有一個公共點B1,當R為何值時,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC中∠B=30°,PA⊥平面ABC,PC⊥BC,PB與平面ABC所成角為45°,AH⊥PC,垂足為H.求二面角A-PB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,A、B分別是橢圓:
x2
4
+y2=1的左、右頂點,P(2,t)(t∈R,且t≠0)為直線x=2上一動點,過點P任意引一直線l與橢圓交于C、D,連結(jié)PO,直線PO分別和AC、AD連線交于E、F.
(1)當直線l恰好經(jīng)過橢圓右焦點和上頂點時,求t的值;
(2)若t=-1,記直線AC、AD的斜率分別為k1,k2,求證:
1
k1
+
1
k2
定值;
(3)求證:四邊形AFBE為平行四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三條直線l1:2x-y+a=0(a>0),直線l2:-4x+2y+1=0和直線l3:x+y-1=0,且l1與l2的距離是
7
5
10
,(1)求a的值;
(2)求l1、l3與x軸圍成的三角形面積;
(3)能否找到一點P,使得P點同時滿足下列三個條件:①P是第一象限的點;②P點到l1的距離是P點到l2的距離的
1
2
;③P點到l1的距離與P點到l3的距離之比是
2
5
?若能,求P點坐標;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x=3是函數(shù)f(x)=(x2+ax+b)e3-x,(x∈R)的一個極值點.
(Ⅰ)求a與b的關(guān)系式(用a表示b),并求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)a>0,g(x)=(a2+
25
4
)ex,若存在ξ1,ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<
25
4
成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=sin(ωx-
π
6
),ω>0,若函數(shù)f(x)的圖象與直線y=m(m為常數(shù))相切,并且切點的橫坐標依次成公差為π的等差數(shù)列.
(1)求ω及m的值;
(2)將函數(shù)y=f(x)的圖象向左平移
π
12
,得到y(tǒng)=g(x)的圖象,當x∈(
π
2
,
4
)時,g(x)=cosα的交點橫坐標依次為x1,x2,x3,若x1,x2,x3-
π
4
構(gòu)成等差數(shù)列,求鈍角α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2-2x+2.
(1)求x∈[0,3]時,求f(x)的最值;
(2)求 x∈[t,t+1]時f(x)的最小值g(t);
(3)求(2)中函數(shù)g(t)當t∈[-3,-2]時的最值.

查看答案和解析>>

同步練習冊答案