相關(guān)習(xí)題
 0  201404  201412  201418  201422  201428  201430  201434  201440  201442  201448  201454  201458  201460  201464  201470  201472  201478  201482  201484  201488  201490  201494  201496  201498  201499  201500  201502  201503  201504  201506  201508  201512  201514  201518  201520  201524  201530  201532  201538  201542  201544  201548  201554  201560  201562  201568  201572  201574  201580  201584  201590  201598  266669 

科目: 來(lái)源: 題型:

若不論k為何值,直線y=k(x-2)+b與曲線x2+y2=9總有公共點(diǎn),則b的取值范圍是( 。
A、(-2,2)
B、[-2,2]
C、(-
5
,
5
D、[-
5
5
]

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)定點(diǎn)F1(-3,0),F(xiàn)2(3,0),動(dòng)點(diǎn)P(x,y)滿足條件|PF1|+|PF2|=6,則動(dòng)點(diǎn)P的軌跡是( 。
A、橢圓B、線段
C、雙曲線D、橢圓或線段

查看答案和解析>>

科目: 來(lái)源: 題型:

給定k∈N*,設(shè)函數(shù)f:N*→N*滿足:對(duì)于任意大于k的正整數(shù)n,f(n)=n-k.已知命題:k=3,當(dāng)n≤3且n∈N*時(shí),2≤f(n)≤3為真命題,則不同的函數(shù)f的個(gè)數(shù)為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)集合A=B={(x,y)|x∈R,y∈R},從A到B的映射f:(x,y)→(x+y,x-y)在映射f下,A中的元素(4,2)對(duì)應(yīng)的B中元素為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

在腰長(zhǎng)為10cm的等腰直角三角形中作一個(gè)內(nèi)接矩形,使它的一邊上斜邊上,另外兩個(gè)頂點(diǎn)在兩個(gè)腰上,那么,矩形的長(zhǎng)與寬各位多少時(shí),矩形面積最大?

查看答案和解析>>

科目: 來(lái)源: 題型:

已知正項(xiàng)等比數(shù)列{an}中,a2=4,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a3,a5分別是等差數(shù)列{bn}的第3項(xiàng)和第5項(xiàng),求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

科目: 來(lái)源: 題型:

若函數(shù)f(x)=
(2-a)x-
a
2
,x<1
logax,x≥1
在(-∞,+∞)單調(diào)遞增,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目: 來(lái)源: 題型:

定義在R上的偶函數(shù)f(x)滿足:對(duì)任意的x1,x2∈(-∞,0](x1≠x2),都有(x2-x1)•[f(x2)-f(x1)]>0,則( 。
A、f(-2)<f(1)<f(3)
B、f(1)<f(-2)<f(3)
C、f(3)<f(-2)<f(1)
D、f(3)<f(1)<f(-2)

查看答案和解析>>

科目: 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,下列各式中運(yùn)算的結(jié)果為向量
AC1
的共有( 。
①(
AB
+
BC
)+
CC1
;②(
AB
+
AD
)+
AA1
;③(
AB
+
BD
)+
DC1
;④(
AA1
+
A1B1
)+
A1D1
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目: 來(lái)源: 題型:

對(duì)某班40名高中學(xué)生是否喜歡數(shù)學(xué)課程進(jìn)行問(wèn)卷調(diào)查,將調(diào)查所得數(shù)據(jù)繪制成二維條形圖,如圖所示.
(1)根據(jù)圖中相關(guān)數(shù)據(jù)完成以下2×2列聯(lián)表;
喜歡數(shù)學(xué)課程不喜歡數(shù)學(xué)課程總計(jì)
總計(jì)40
(2)計(jì)算有多大把握認(rèn)為性別與是否喜歡數(shù)學(xué)課程有關(guān)系?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
臨界值附表:
P(K2≥k00.50.40.250.150.10.01
k00.4550.7081.3232.0722.7066.635

查看答案和解析>>

同步練習(xí)冊(cè)答案