相關(guān)習(xí)題
 0  202355  202363  202369  202373  202379  202381  202385  202391  202393  202399  202405  202409  202411  202415  202421  202423  202429  202433  202435  202439  202441  202445  202447  202449  202450  202451  202453  202454  202455  202457  202459  202463  202465  202469  202471  202475  202481  202483  202489  202493  202495  202499  202505  202511  202513  202519  202523  202525  202531  202535  202541  202549  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=
1
(x+1)2
.若f(x)+f(
1
x
)≥m恒成立,求m的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=(x2-2x)•lnx+ax2+2.
(Ⅰ)當(dāng)a=-1時(shí),求f(x)在(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a=1時(shí),設(shè)函數(shù)g(x)=f(x)-x-2,若?x∈(
1
e2
,e)
,都有g(shù)(x)≤m恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=(
1
2
|x-1|+a|x+2|.當(dāng)a=1時(shí),f(x)的單調(diào)遞減區(qū)間為
 
;當(dāng)a=-1時(shí),f(x)的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標(biāo)系中,圓C的方程為x2+y2-8x+12=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,2為半徑的圓與圓C有公共點(diǎn),則k的取值范圍是
 

查看答案和解析>>

科目: 來源: 題型:

若曲線C1:y=ax2(a>0)與曲線C2:y=ex存在公共切線,則a的取值范圍為( 。
A、[
e2
8
,+∞)
B、(0,
e2
8
]
C、[
e2
4
,+∞)
D、(0,
e2
4
]

查看答案和解析>>

科目: 來源: 題型:

如圖所示,點(diǎn)A,B,C是圓O上的三點(diǎn),線段OC與線段AB交于圓內(nèi)一點(diǎn),若
OC
=m
OA
+n
OB
,若m+n=2,則∠AOB的最小值(  )
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

科目: 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右兩個(gè)焦點(diǎn)分別為F1、F2、A、B為其左、右兩個(gè)頂點(diǎn),以線段F1F2為直徑的圓與雙曲線的漸近線在第一象限的交點(diǎn)為M,且∠MAB=30°,則該雙曲線的離心率為(  )
A、
21
2
B、
21
3
C、
19
3
D、
19
2

查看答案和解析>>

科目: 來源: 題型:

下列四個(gè)結(jié)論中,
①命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”;
②若p∧q為假命題,則p,q均為假命題;
③若命題p:?x0∈R,使得x02+2x0+3<0,則¬p:?x∈R,都有x2+2x+3≥0;
④設(shè)
a
,
b
為兩個(gè)非零向量,則“
a
b
=|
a
|•|
b
|”是“a與b共線”的充分必要條件;
正確結(jié)論的序號(hào)是的是
 

查看答案和解析>>

科目: 來源: 題型:

下列說法:
A、一個(gè)命題的逆命題為真,則它的逆否命題一定為真
B、“a>b”與“a+c>b+c”不等價(jià)
C、“a2+b2=0,則a,b全為EBD”的逆否命題是“若PBC全不為PCD,則ABCD-A1B1C1D1
D、一個(gè)命題的否命題為真,則它的逆命題一定為真
其中正確的有
 
個(gè).

查看答案和解析>>

科目: 來源: 題型:

若以曲線y=f(x)上任意一點(diǎn)M(x1,y1)為切點(diǎn)作切線l1,曲線上總存在異于M的點(diǎn)N(x2,y2),以點(diǎn)N為切點(diǎn)作切線l2,且l1∥l2,則稱曲線y=f(x)具有“可平行性”.現(xiàn)有下列命題:
①函數(shù)y=(x-2)2+lnx的圖象具有“可平行性”;
②定義在(-∞,0)∪(0,+∞)的奇函數(shù)y=f(x)的圖象都具有“可平行性”;
③三次函數(shù)f(x)=x3-x2+ax+b具有“可平行性”,且對(duì)應(yīng)的兩切點(diǎn)M(x1,y1),N(x2,y2)的橫坐標(biāo)滿足x1+x2=
2
3
;
④要使得分段函數(shù)f(x)=
x+
1
x
(m<x)
ex-1(x<0)
的圖象具有“可平行性”,當(dāng)且僅當(dāng)實(shí)數(shù)m=1.其中的真命題是
 
.(寫出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案