相關(guān)習(xí)題
 0  228133  228141  228147  228151  228157  228159  228163  228169  228171  228177  228183  228187  228189  228193  228199  228201  228207  228211  228213  228217  228219  228223  228225  228227  228228  228229  228231  228232  228233  228235  228237  228241  228243  228247  228249  228253  228259  228261  228267  228271  228273  228277  228283  228289  228291  228297  228301  228303  228309  228313  228319  228327  266669 

科目: 來源: 題型:選擇題

16.已知函數(shù)f(x)在定義域[-3,3]上是偶函數(shù),在[0,3]上單調(diào)遞增,并且f(-m2-1)>f(-m2+2m-2),則m的取值范圍是( 。
A.$(1-\sqrt{2},\sqrt{2}]$B.$[1-\sqrt{2},\sqrt{2}]$C.$[\frac{1}{2},\sqrt{2}]$D.$(\frac{1}{2},\sqrt{2}]$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知公差不為零的等差數(shù)列{an}(n≥3)的最大項為正數(shù).若將數(shù)列{an}中的項重新排列得到公比為q的等比數(shù)列{bn}.則下列說法正確的是( 。
A.q>0時,數(shù)列{bn}中的項都是正數(shù)B.數(shù)列{an}中一定存在的為負(fù)數(shù)的項
C.數(shù)列{an}中至少有三項是正數(shù)D.以上說法都不對

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知函數(shù)f(x)在定義域[2-a,3]上是偶函數(shù),在[0,3]上單調(diào)遞增,并且f(-m2-$\frac{a}{5}$)>f(-m2+2m-2),則m的取值范圍是( 。
A.$(1-\sqrt{2},\sqrt{2}]$B.$[1-\sqrt{2},\sqrt{2}]$C.$[\frac{1}{2},\sqrt{2}]$D.$(\frac{1}{2},\sqrt{2}]$

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知數(shù)列{an}滿足an+1=2an+n-1,且a1=1.
(Ⅰ)求證:{an+n}為等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目: 來源: 題型:解答題

12.將下列參數(shù)方程(t為參數(shù))化成普通方程,并說明表示什么曲線:
(1)$\left\{\begin{array}{l}{x=\sqrt{{t}^{2}+2t+3}}\\{y=\sqrt{{t}^{2}+2t+2}}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x=sint+cost}\\{y=sintcost}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{x=t+\frac{1}{t}-1}\\{y=t-\frac{1}{t}+1}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{x=\frac{1-{t}^{2}}{1+{t}^{2}}}\\{y=\frac{2t}{1+{t}^{2}}}\end{array}\right.$;
(5)$\left\{\begin{array}{l}{x=\frac{1-t}{1+t}}\\{y=\frac{2t}{1+t}}\end{array}\right.$;
(6)$\left\{\begin{array}{l}{x=\frac{2}{1+{t}^{2}}}\\{y=\frac{2t}{1+{t}^{2}}}\end{array}\right.$.

查看答案和解析>>

科目: 來源: 題型:填空題

11.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x-y-8≤0}\end{array}\right.$,則;z=y-x最小值是-4,z=$\frac{x}{y+4}$的最大值是1.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知數(shù)列{an}的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列.設(shè)數(shù)列{an}的前n項和為Sn,且滿足a4=S3,a9=a3+a4
(1)求數(shù)列{an}的通項公式;
(2)若akak+1=ak+2,求正整數(shù)k的值;
(3)是否存在正整數(shù)k,使得$\frac{{{S_{2k}}}}{{{S_{2k-1}}}}$恰好為數(shù)列{an}的一項?若存在,求出所有滿足條件的正整數(shù)k;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

9.在直角坐標(biāo)平面,已知兩定點A(1,0)、B(1,1)和一動點M(x,y)滿足$\left\{\begin{array}{l}0≤\overrightarrow{OM}•\;\overrightarrow{OA}≤1\\ 0≤\overrightarrow{OM}•\;\overrightarrow{OB}≤2\end{array}\right.$,則點P(x+y,x-y)構(gòu)成的區(qū)域的面積為4.

查看答案和解析>>

科目: 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{a^{\;x}}\;,x<1\\|{{x^2}-2x}|,x≥1\end{array}$(其中a>0,a≠1),若不等式f(x)≤3的解集為(-∞,3],則實數(shù)a的取值范圍為(1,3].

查看答案和解析>>

科目: 來源: 題型:填空題

7.在正項等比數(shù)列{an}中,a1a3=1,a2+a3=$\frac{4}{3}$,則$\lim_{n→∞}$(a1+a2+…+an)=$\frac{9}{2}$.

查看答案和解析>>

同步練習(xí)冊答案