相關(guān)習題
 0  228414  228422  228428  228432  228438  228440  228444  228450  228452  228458  228464  228468  228470  228474  228480  228482  228488  228492  228494  228498  228500  228504  228506  228508  228509  228510  228512  228513  228514  228516  228518  228522  228524  228528  228530  228534  228540  228542  228548  228552  228554  228558  228564  228570  228572  228578  228582  228584  228590  228594  228600  228608  266669 

科目: 來源: 題型:填空題

1.若三棱柱ABC-A1B1C1的體積為V,P為CC1上的一點,${V}_{P-AB{B}_{1}{A}_{1}}$=$\frac{2V}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.如圖,M是以A、B為焦點的雙曲線x2-y2=2右支上任一點,若點M到點C(3,1)與點B的距離之和為S,則S的取值范圍是( 。
A.[$\sqrt{26}$+$\sqrt{2}$,+∞)B.[$\sqrt{26}$-$2\sqrt{2}$,+∞)C.[$\sqrt{26}$-$2\sqrt{2}$,$\sqrt{26}$+$2\sqrt{2}$)D.[$\sqrt{26}$-$\sqrt{2}$,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

19.圓O上兩點C,D在直徑AB的兩側(cè)(如圖甲),沿直徑AB將圓O折起形成一個二面角(如圖乙),若∠DOB的平分線交弧$\widehat{BD}$于點G,交弦BD于點E,F(xiàn)為線段BC的中點.

(Ⅰ)證明:平面OGF∥平面CAD.
(Ⅱ)若二面角C-AB-D為直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求四面體FCOG的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和為Sn,且3Sn+an-3=0,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{1}{2}$log2(1-Sn+1),求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

17.某高校一專業(yè)在一次自主招生中,對20名已經(jīng)選拔入圍的學生進行語言表達能力和邏輯思維能力測試,結(jié)果如表:
語言表達能力
人數(shù)
邏輯思維能力
一般良好優(yōu)秀
一般221
良好4m1
優(yōu)秀13n
由于部分數(shù)據(jù)丟失,只知道從這20名參加測試的學生中隨機抽取一人,抽到語言表達能力優(yōu)秀或邏輯思維能力優(yōu)秀的學生的概率為$\frac{2}{5}$.
(1)求m,n的值;
(2)從參加測試的語言表達能力良好的學生中任意抽取2名,求其中至少有一名邏輯思維能力優(yōu)秀的學生的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

16.設(shè)雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點為F(-c,0)(c>0),P為雙曲線C右支上的一點,線段PF與圓x2+y2+$\frac{2c}{3}$x+$\frac{a^2}{9}$=0相切于點Q,且$\overrightarrow{PF}$+3$\overrightarrow{FQ}$=$\overrightarrow 0$,則雙曲線C的離心率為$\sqrt{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知紙片Rt△ABC中,AB=AC=1,過頂點A翻折紙片,得到折痕AD,將翻折后的紙片豎起放置在桌面上(BD,DC與桌面接觸)使AD垂直于桌面,且二面角B-AD-C為直二面角.
(1)求VD-ABC;
(2)求四面體D-ABC的表面積.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和為Sn,且3Sn+an-3=0,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{1}{2}{log_2}({1-{S_{n+1}}})$,求Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,求使Tn≥$\frac{504}{1009}$成立的n的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

13.計算:sin65°cos35°-sin25°sin35°=$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,若依次輸入m=${0.6^{\frac{1}{2}}}$,n=0.6-2,p=${({\frac{1}{3}})^{\frac{1}{2}}}$,則輸出的結(jié)果為( 。
A.${({\frac{1}{3}})^{\frac{1}{2}}}$B.${0.6^{\frac{1}{2}}}$C.0.6-2D.${0.6^{-\frac{3}{2}}}$

查看答案和解析>>

同步練習冊答案