相關(guān)習(xí)題
 0  228692  228700  228706  228710  228716  228718  228722  228728  228730  228736  228742  228746  228748  228752  228758  228760  228766  228770  228772  228776  228778  228782  228784  228786  228787  228788  228790  228791  228792  228794  228796  228800  228802  228806  228808  228812  228818  228820  228826  228830  228832  228836  228842  228848  228850  228856  228860  228862  228868  228872  228878  228886  266669 

科目: 來(lái)源: 題型:選擇題

5.在平面幾何中有正確的結(jié)論,已知一個(gè)正三角形的內(nèi)切圓面積為S1,外接圓面積為S2,則$\frac{{S}_{1}}{{S}_{2}}$=$\frac{1}{4}$,類比上述結(jié)論推理,在空間中,已知一個(gè)正四面體的內(nèi)切球體積為V1,外接球體積為V2,則$\frac{{V}_{1}}{{V}_{2}}$=( 。
A.$\frac{1}{3}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.$\frac{1}{27}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.如圖,AB是圓柱的直徑且AB=2,PA是圓柱的母線且PA=2,點(diǎn)C是圓柱底面圓周上的點(diǎn).
(1)求圓柱的側(cè)面積和體積;
(2)求三棱錐P-ABC體積的最大值;
(3)若AC=1,D是PB的中點(diǎn),點(diǎn)E在線段PA上,求CE+ED的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

3.在△ABC中,若A=30°,$a=\sqrt{3}$,則$\frac{a+b+c}{sinA+sinB+sinC}$=2$\sqrt{3}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.已知首項(xiàng)為1的正項(xiàng)數(shù)列{an}滿足an+12+an2<$\frac{5}{2}{a_{n+1}}{a_n}$,n∈N*,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)若a2=$\frac{3}{2}$,a3=x,a4=4,求x的取值范圍;
(2)設(shè)數(shù)列{an}是公比為q的等比數(shù)列,若$\frac{1}{2}{S_n}$<Sn+1<2Sn,n∈N*,求q的取值范圍;
(3)若a1,a2,…,ak(k≥3)成等差數(shù)列,且a1+a2+…+ak=120,求正整數(shù)k的最小值,以及k取最小值時(shí)相應(yīng)數(shù)列a1,a2,…,ak

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.某產(chǎn)品在某零售攤位的零售價(jià)x(單位:元)與每天的銷售量y(單位:個(gè))的統(tǒng)計(jì)資料如下表所示:
x 11 10.5 10 9.5 9
y 5 6 8 1010
根據(jù)上表得回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=-3.2,$\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{x}$,據(jù)此回歸方程估計(jì)零售價(jià)為5元時(shí)銷售量估計(jì)為( 。
A.16個(gè)B.20個(gè)C.24個(gè)D.28個(gè)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.某火鍋店為了了解氣溫對(duì)營(yíng)業(yè)額的影響,隨機(jī)記錄了該店1月份中5天的日營(yíng)業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如表:
x258911
y1210887
(Ⅰ)求y關(guān)于x的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)判定y與x之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額.
(Ⅲ)設(shè)該地1月份的日最低氣溫X~N(μ,δ2),其中μ近似為樣本平均數(shù)$\overline{x}$,δ2近似為樣本方差s2,求P(3.8<X<13.4)
附:①回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,δ2),則P(μ-δ<X<μ+δ)=0.6826,P(μ-2δ<X<μ+2δ)=0.9544.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.某品牌新款夏裝即將上市,為了對(duì)夏裝進(jìn)行合理定價(jià),在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):
連鎖店A店B店C店
售價(jià)x(元)808682888490
銷售量y(件)887885758266
(1)以三家連鎖店分別的平均售價(jià)和平均銷量為散點(diǎn),求出售價(jià)與銷量的回歸直線方程$\widehaty=\widehatbx+\widehata$;
(2)在大量投入市場(chǎng)后,銷售量與單價(jià)仍然服從(1)中的關(guān)系,且該夏裝成本價(jià)為40元/件,為使該款夏裝在銷售上獲得最大利潤(rùn),該款夏裝的單價(jià)應(yīng)定為多少元(保留整數(shù))?$\left\{\begin{array}{l}\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \widehata=\overline y-\widehatb\overline x\end{array}\right.$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.銀川唐徠回民中學(xué)高二年級(jí)某次周考中(滿分100分),理科A班五名同學(xué)的物理成績(jī)?nèi)绫硭荆?br />
學(xué)生A1A2A3A4A5
數(shù)學(xué)x8991939597
物理y8789899293
(1)請(qǐng)?jiān)谌鐖D直角坐標(biāo)系中作出兩組數(shù)據(jù)散點(diǎn)圖,并判斷正負(fù)相關(guān);
(2)依據(jù)散點(diǎn)圖說(shuō)明物理成績(jī)與數(shù)學(xué)成績(jī)是否具有線性相關(guān)性,若有,求出線性回歸直線方程;
(3)要從4名數(shù)學(xué)成績(jī)高于90分以上的同學(xué)中選出2人參加大學(xué)先修課程的學(xué)習(xí),求所選兩人中至少有一人物理成績(jī)高于90分的概率.
以下公式及數(shù)據(jù)供選擇:
b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$
$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=41880;
$\sum_{i=1}^{5}{{x}_{i}}^{2}$=43285.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.從2016年1月1日起,廣東、湖北等18個(gè)保監(jiān)局所轄地區(qū)將納入商業(yè)車險(xiǎn)改革試點(diǎn)范圍,其中最大的變化是上一年的出險(xiǎn)次數(shù)決定了下一年的保費(fèi)倍率,具體關(guān)系如表:
上一年出險(xiǎn)次數(shù)012345次以上(含5次)
下一年保費(fèi)倍率85%100%125%150%175%200%
連續(xù)兩年沒(méi)出險(xiǎn)打7折,連續(xù)三年沒(méi)出險(xiǎn)打6折
經(jīng)驗(yàn)表明新車商業(yè)險(xiǎn)保費(fèi)與購(gòu)車價(jià)格有較強(qiáng)的線性關(guān)系,下面是隨機(jī)采集的8組數(shù)據(jù)(x,y)(其中x(萬(wàn)元)表示購(gòu)車價(jià)格,y(元)表示商業(yè)車險(xiǎn)保費(fèi)):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),設(shè)由著8組數(shù)據(jù)得到的回歸直線方程為:$\widehat{y}$=b$\widehat{x}$+1055.
(1)求b;
(2)廣東李先生2016年1月購(gòu)買一輛價(jià)值20萬(wàn)元的新車
      ①估計(jì)李先生購(gòu)車時(shí) 的商業(yè)車險(xiǎn)保費(fèi);
      ②若該車今年2月份已出過(guò)一次險(xiǎn),現(xiàn)在有被刮花了,李先生到汽車維修4S店詢價(jià),預(yù)計(jì)修車費(fèi)用為800元,保險(xiǎn)專家建議李先生自費(fèi)(即不出險(xiǎn)),你認(rèn)為李先生是否應(yīng)該接受建議?說(shuō)明理由.(假設(shè)車輛下一年與上一年都購(gòu)買相同的商業(yè)車險(xiǎn)產(chǎn)品進(jìn)行續(xù)保)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.從2016年1月1日起,廣東、湖北等18個(gè)保監(jiān)局所轄地區(qū)將納入商業(yè)車險(xiǎn)改革試點(diǎn)范圍,其中最大的變化是上一年的出險(xiǎn)次數(shù)決定了下一年的保費(fèi)倍率,具體關(guān)系如表:
上一年出險(xiǎn)次數(shù)012345次以上(含5次)
下一年保費(fèi)倍率85%100%125%150%175%200%
連續(xù)兩年沒(méi)出險(xiǎn)打7折,連續(xù)三年沒(méi)出險(xiǎn)打6折
經(jīng)驗(yàn)表明新車商業(yè)險(xiǎn)保費(fèi)與購(gòu)車價(jià)格有較強(qiáng)的線性關(guān)系,下面是隨機(jī)采集的8組數(shù)據(jù)(x,y)(其中x(萬(wàn)元)表示購(gòu)車價(jià)格,y(元)表示商業(yè)車險(xiǎn)保費(fèi)):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),設(shè)由著8組數(shù)據(jù)得到的回歸直線方程為:$\widehat{y}$=b$\widehat{x}$+1055.
(1)求b;
(2)有評(píng)估機(jī)構(gòu)從以往購(gòu)買了車險(xiǎn)的車輛中隨機(jī)抽取了1000輛調(diào)查,得到一年中出險(xiǎn)次數(shù)的頻數(shù)分布如下(并用相應(yīng)頻率估計(jì)2016年度出險(xiǎn)次數(shù)的概率):
一年中出險(xiǎn)的次數(shù)012345次以上(含5次)
頻數(shù)5003801001541
廣東李先生2016年1月購(gòu)買一輛價(jià)值20萬(wàn)元的新車,根據(jù)以上信息,試估計(jì)該車輛在2017年1月續(xù)保時(shí)應(yīng)繳的商業(yè)險(xiǎn)保費(fèi)(精確到元),并分析車險(xiǎn)新政是否總體上減輕了車主負(fù)擔(dān),(假設(shè)車輛下一年與上一年都購(gòu)買相同的商業(yè)車險(xiǎn)產(chǎn)品進(jìn)行續(xù)保)

查看答案和解析>>

同步練習(xí)冊(cè)答案