相關習題
 0  229028  229036  229042  229046  229052  229054  229058  229064  229066  229072  229078  229082  229084  229088  229094  229096  229102  229106  229108  229112  229114  229118  229120  229122  229123  229124  229126  229127  229128  229130  229132  229136  229138  229142  229144  229148  229154  229156  229162  229166  229168  229172  229178  229184  229186  229192  229196  229198  229204  229208  229214  229222  266669 

科目: 來源: 題型:選擇題

9.過點M(1,1)的直線與橢圓$\frac{x^2}{4}+\frac{y^2}{3}$=1交于A,B兩點,且點M平分弦AB,則直線AB的方程為( 。
A.4x+3y-7=0B.3x+4y-7=0C.3x-4y+1=0D.4x-3y-1=0

查看答案和解析>>

科目: 來源: 題型:解答題

8.某職業(yè)學校有2000名學生,校服務部為了解學生在校的月消費情況,隨機調(diào)查了100名學生,并將統(tǒng)計結(jié)果繪成直方圖如圖:
(Ⅰ)試估計該校學生在校月消費的平均數(shù);
(Ⅱ)根據(jù)校服務部以往的經(jīng)驗,每個學生在校的月消費金額x(元)和服務部可獲得利潤y(元),滿足關系式:$y=\left\{\begin{array}{l}20,\;\;\;200≤x<400\\ 40,\;\;400≤x<800\\ 80,\;\;800≤x≤1200.\end{array}\right.$根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問題:
(。⿲τ谌我庖粋學生,校服務部可獲得的利潤記為ξ,求ξ的分布列及數(shù)學期望.
(ⅱ)若校服務部計劃每月預留月利潤的$\frac{2}{9}$,用于資助在校月消費低于400元的學生,那么受資助的學生每人每月可獲得多少元?

查看答案和解析>>

科目: 來源: 題型:填空題

7.二面角α-l-β的大小為$\frac{π}{4}$,直線AB?α,若AB與l所成的角為$\frac{π}{4}$,則AB與β所成角的正弦值=$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.某中學有初中學生1800人,高中學生1200人.為了解學生本學期課外閱讀時間,現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們課外閱讀時間,然后按“初中學生”和“高中學生”分為兩組,再將每組學生的閱讀時間(單位:小時)分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(Ⅰ)寫出a的值;
(Ⅱ)試估計該校所有學生中,閱讀時間不小于30個小時的學生人數(shù);
(Ⅲ)從閱讀時間不足10個小時的樣本學生中隨機抽取2人,求至少抽到1名高中生的概率.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.設直線l:3x+4y+a=0,圓C:(x-2)2+y2=2,若在直線l上存在一點M,使得過M的圓C的切線MP,MQ(P,Q為切點)滿足∠PMQ=90°,則a的取值范圍是( 。
A.[-18,6]B.[6-5$\sqrt{2}$,6+5$\sqrt{2}$]C.[-16,4]D.[-6-5$\sqrt{2}$,-6+5$\sqrt{2}$]

查看答案和解析>>

科目: 來源: 題型:解答題

4.求過點M(3,2)且與圓x2+y2+4x-2y+4=0相切的直線方程.

查看答案和解析>>

科目: 來源: 題型:填空題

3.對任意的實數(shù)m,n,當0<n<m<$\frac{1}{a}$,恒有$\frac{\root{m}{n}}{\root{n}{m}}$>$\frac{{n}^{a}}{{m}^{a}}$成立,則實數(shù)a的最小值為1.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知定點A(-1,0),B是圓C:(x-1)2+y2=8(C為圓心)上的動點,AB的垂直平分線與BC交于點E.
(1)求動點E的軌跡Γ方程;
(2)設M、N是Γ上位于x軸上方的兩點,且AM∥CN,若|AM|-|CN|=$\frac{3\sqrt{2}}{8}$,求直線AM的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知點M(x,y)與兩個定點M1(-c,0),M2(c,0)的距離的比等于一個正數(shù)m,求點M的軌跡方程,并說明軌跡是什么圖形.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=|2x-1|.
(1)若不等式f(x+$\frac{1}{2}$)≤2m+1(m>0)的解集為[-2,2],求實數(shù)m的值;
(2)對任意x,y∈R,求證:f(x)≤2y+$\frac{4}{{2}^{y}}$+|2x+3|.

查看答案和解析>>

同步練習冊答案