相關(guān)習(xí)題
 0  229272  229280  229286  229290  229296  229298  229302  229308  229310  229316  229322  229326  229328  229332  229338  229340  229346  229350  229352  229356  229358  229362  229364  229366  229367  229368  229370  229371  229372  229374  229376  229380  229382  229386  229388  229392  229398  229400  229406  229410  229412  229416  229422  229428  229430  229436  229440  229442  229448  229452  229458  229466  266669 

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=ax4-$\frac{1}{2}{x^2}$,x∈(0,+∞),g(x)=f(x)-f′(x).
(1)若a>0,求證:
(。ゝ(x)在f'(x)的單調(diào)減區(qū)間上也單調(diào)遞減;
(ⅱ)g(x)在(0,+∞)上恰有兩個(gè)零點(diǎn);
(2)若a>1,記g(x)的兩個(gè)零點(diǎn)為x1,x2,求證:4<x1+x2<a+4.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知直線l與橢圓$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)交于A(x1,y1)、B(x2,y2)兩點(diǎn),橢圓的焦點(diǎn)到長軸兩個(gè)頂點(diǎn)的距離分別為2+$\sqrt{3}$,2-$\sqrt{3}$,向量$\overrightarrow{m}$=(ax1,by1),$\overrightarrow{n}$=(ax2,by2),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l的斜率為1,O為坐標(biāo)原點(diǎn),求△AOB的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)f(x)=ex,x∈R.
(1)設(shè)x>0,討論曲線y=$\frac{f(x)}{x^2}$與直線y=m公共點(diǎn)的個(gè)數(shù);
(2)設(shè)函數(shù)h(x)滿足x2h′(x)+2xh(x)=$\frac{f(x)}{x}$,h(2)=$\frac{f(2)}{8}$,試比較h(e)與$\frac{7}{8}$的大小.(e2=7.389)

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知橢圓的長軸長是短軸長的2倍,則橢圓的焦距與短軸長之比為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知函數(shù)y=f(x)的定義域內(nèi)任意的自變量x都有f($\frac{π}{2}$-x)=f($\frac{π}{2}$+x),且對(duì)任意的x∈(-$\frac{π}{2}$,$\frac{π}{2}$),都有f′(x)+f(x)tanx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),設(shè)a=f($\frac{4π}{3}$),b=f($\frac{2π}{3}$),c=$\frac{1}{2}$f(0),則a,b,c的大小關(guān)系為(  )
A.a<c<bB.c<a<bC.c<b<aD.b<a<c

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)F1坐標(biāo)為(-2,0),F(xiàn)2為橢圓C的右焦點(diǎn),點(diǎn)M($\sqrt{3}$,1)在橢圓C上.
(1)求橢圓C的方程;
(2)直線l過F2與橢圓C相交于P,Q兩點(diǎn),記弦PQ中點(diǎn)為N,過F2作直線l的垂線與直線ON交于點(diǎn)T.
①若直線l斜率為$\sqrt{3}$,求PF1+QF1的值;
②求證:點(diǎn)T總在某定直線上.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=2x,雙曲線的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為雙曲線的右支上的一點(diǎn),且滿足∠F1PF2=60°,S${\;}_{△{F}_{1}P{F}_{2}}$=$\sqrt{3}$,則雙曲線的方程為(  )
A.4x2-y2=1B.2x2-$\frac{{y}^{2}}{2}$=1C.3x2-$\frac{3{y}^{2}}{4}$=1D.5x2-$\frac{5{y}^{2}}{4}$=1

查看答案和解析>>

科目: 來源: 題型:填空題

10.對(duì)于函數(shù)f(x),若在其定義域內(nèi)存在兩個(gè)實(shí)數(shù)a,b(a<b),使當(dāng)x∈[a,b]時(shí),f(x)的值域也是[a,b],則稱函數(shù)f(x)為“布林函數(shù)”,區(qū)間[a,b]稱為函數(shù)f(x)的“等域區(qū)間”
(1)布林函數(shù)$f(x)=\sqrt{x}$的等域區(qū)間是:[0,1]
(2)若函數(shù)$f(x)=k+\sqrt{x+2}$是布林函數(shù),則實(shí)數(shù)k的取值范圍是:$({-\frac{9}{4},-2})$.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.若函數(shù)y=f(x)的定義域是[0、1],則函數(shù)g(x)=$\frac{f(x)}{\sqrt{x-\frac{1}{2}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.[$\frac{1}{2}$,+∞]B.($\frac{1}{2}$,1)C.($\frac{1}{2}$,1]D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知P是拋物線y2=4x上一動(dòng)點(diǎn),則點(diǎn)P到直線l:2x-y+3=0距離的最小值是( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{5}$-1

查看答案和解析>>

同步練習(xí)冊(cè)答案