相關(guān)習(xí)題
 0  229348  229356  229362  229366  229372  229374  229378  229384  229386  229392  229398  229402  229404  229408  229414  229416  229422  229426  229428  229432  229434  229438  229440  229442  229443  229444  229446  229447  229448  229450  229452  229456  229458  229462  229464  229468  229474  229476  229482  229486  229488  229492  229498  229504  229506  229512  229516  229518  229524  229528  229534  229542  266669 

科目: 來源: 題型:選擇題

19.若動圓的圓心在拋物線y=$\frac{1}{12}$x2上,且與直線y+3=0相切,則此圓恒過定點(  )
A.(0,2)B.(0,-3)C.(0,3)D.(0,6)

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知函數(shù)$f(x)=sinx+2{cos^2}\frac{x}{2}-1$,$g(x)=2\sqrt{2}sinxcosx$,下列結(jié)論正確的是( 。
A.函數(shù)f(x)與g(x)的最大值不同
B.函數(shù)f(x)與g(x)在$(\frac{3π}{4},\;\;\frac{5π}{4})$上都為增函數(shù)
C.函數(shù)f(x)與g(x)的圖象的對稱軸相同
D.將函數(shù)f(x)的圖象上各點的橫坐標(biāo)縮短為原來的$\frac{1}{2}$,縱坐標(biāo)不變,再通過平移能得到g(x)的圖象

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知點P為拋物線y2=4x上的一個動點,點Q為圓x2+(y-7)2=1上的一個動點,那么點P到點Q的距離與點P到y(tǒng)軸的距離之和的最小值是( 。
A.5$\sqrt{2}$-7B.5$\sqrt{2}$-2C.5$\sqrt{2}$-1D.5$\sqrt{2}$+1

查看答案和解析>>

科目: 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=sinxcosx-sin2(x-$\frac{π}{4}$).
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x-$\frac{π}{6}$)在[0,$\frac{π}{2}$]上的最大值與最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.若隨機變量X~N(1,9),則D($\frac{1}{3}$x)的值是( 。
A.1B.3C.9D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

14.設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),對于任意的實數(shù)x,有f(x)+f(-x)=2x2,當(dāng)x∈(-∞,0]時,f′(x)+1<2x.若f(2+m)-f(-m)≤2m+2,則實數(shù)m的取值范圍是[-1,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

13.設(shè)四個函數(shù):①y=x${\;}^{\frac{1}{2}}$;②y=21-x;③y=ln(x+1);④y=|1-x|.其中在區(qū)間(0,1)內(nèi)單調(diào)遞減的函數(shù)的序號是②④.

查看答案和解析>>

科目: 來源: 題型:填空題

12.圓錐被一個平面截去一部分,剩余部分再被另一個平面截去一部分后,與半球(半徑為r)組成一個幾何體,則該幾何體三視圖中的正視圖和俯視圖如圖所示,若r=1,則該幾何體的體積為$\frac{5π}{6}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=lnx+ax2+bx.(a,b∈R).
(1)曲線y=f(x)上一點A(1,2),若在點A處的切線與直線2x-y-10=0平行,求a,b的值;
(2)設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),若f′(2)=$\frac{1}{2}$,且函數(shù)y=f(x)在(0,+∞)是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=x2+ax-lnx.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=f(x)+2lnx,F(xiàn)(x)=3g(x)-2xg′(x),若函數(shù)F(x)在定義域內(nèi)有兩個零點x1,x2,且x1<x2,求證:$F'(\frac{{{x_1}+{x_2}}}{2})$<0.

查看答案和解析>>

同步練習(xí)冊答案