相關(guān)習(xí)題
 0  230190  230198  230204  230208  230214  230216  230220  230226  230228  230234  230240  230244  230246  230250  230256  230258  230264  230268  230270  230274  230276  230280  230282  230284  230285  230286  230288  230289  230290  230292  230294  230298  230300  230304  230306  230310  230316  230318  230324  230328  230330  230334  230340  230346  230348  230354  230358  230360  230366  230370  230376  230384  266669 

科目: 來源: 題型:解答題

17.已知等比數(shù)列{an},a3=4,且a3,a4+2,a5成等差數(shù)列,數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和為Tn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Tn<m對(duì)任意n∈N*恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

16.P是長、寬、高分別為12,3,4的長方形外接球表面上一動(dòng)點(diǎn),設(shè)P到長方體各個(gè)面所在平面的距離為d,則d的取值范圍是[0,$\frac{25}{2}$].

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知一個(gè)錐體挖去一個(gè)柱體后的三視圖如圖所示,網(wǎng)格上小正方形的邊長為1,則該幾何體的體積等于( 。
A.11πB.C.$\frac{11}{3}$πD.

查看答案和解析>>

科目: 來源: 題型:解答題

14.甲、乙兩所學(xué)校高三年級(jí)分別有600人,500人,為了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計(jì)表如表:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34714
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)17x42
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y4
(Ⅰ)計(jì)算x,y的值;
(Ⅱ)若規(guī)定考試成績?cè)赱120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩所學(xué)校的數(shù)學(xué)成績有差異;
甲校乙校總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
(Ⅲ)若規(guī)定考試成績?cè)赱120,150]內(nèi)為優(yōu)秀,現(xiàn)從已抽取的110人中抽取兩人,要求每校抽1人,所抽的兩人中有人優(yōu)秀的條件下,求乙校被抽到的同學(xué)不是優(yōu)秀的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$.其中n=a+b+c+d.
臨界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目: 來源: 題型:選擇題

13.如圖所示,一個(gè)幾何體的主視圖和左視圖都是邊長為4的正方形,中間線段平分正方形,俯視圖中有一內(nèi)切圓,則該幾何體的全面積為( 。
A.64+8πB.56+12πC.32+8πD.48+8π

查看答案和解析>>

科目: 來源: 題型:選擇題

12.某空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$2\sqrt{3}$B.$4\sqrt{3}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=$\frac{2}{3}$+$\frac{1}{x}$(x>0),數(shù)列{an}滿足a1=1,an=f($\frac{1}{{a}_{n-1}}$),n∈N*,且n≥2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)n∈N*,設(shè)Sn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$,若Sn≥$\frac{3t}{4n}$恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.甲、乙兩所學(xué)校高三年級(jí)分別有600人,500人,為了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
 分組[70,80)[80,90)[90,100)[100,110)
 頻數(shù) 3 4 7 14
 分組[110,120)[120,130)[130,140)[140,150]
 頻數(shù) 17 4
乙校:
 分組[70,80)[80,90)[90,100)[100,110)
 頻數(shù) 1 2 8 9
 分組[110,120)[120,130)[130,140)[140,150]
 頻數(shù) 1010  y
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績?cè)赱120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩所學(xué)校的數(shù)學(xué)成績有差異;
(3)若規(guī)定考試成績?cè)赱120,150]內(nèi)為優(yōu)秀,現(xiàn)從已抽取的110人中抽取兩人,要求每校抽1人,所抽的兩人中有人優(yōu)秀的條件下,求乙校被抽到的同學(xué)不是優(yōu)秀的概率.
 甲校 乙校 總計(jì) 
 優(yōu)秀   
 非優(yōu)秀   
 總計(jì)   
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$,其中n=a+b+c+d.
臨界值表:
 P(K2≥k0 0.100.05 0.010
 k0 2.706 3.8416.635 

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知某幾何體的三視圖如圖所示,則此幾何體的體積是$\frac{2}{3}$;  表面積是$3+\sqrt{2}+\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

8.一個(gè)棱長為$\root{3}{6}$的正方體被一個(gè)平面截去一部分后,剩余部分的三視圖如圖所示,則此剩余部分的體積為5.

查看答案和解析>>

同步練習(xí)冊(cè)答案