相關(guān)習(xí)題
 0  230715  230723  230729  230733  230739  230741  230745  230751  230753  230759  230765  230769  230771  230775  230781  230783  230789  230793  230795  230799  230801  230805  230807  230809  230810  230811  230813  230814  230815  230817  230819  230823  230825  230829  230831  230835  230841  230843  230849  230853  230855  230859  230865  230871  230873  230879  230883  230885  230891  230895  230901  230909  266669 

科目: 來源: 題型:選擇題

1.函數(shù)f(x)=2ax-2+1(a>0且a≠1)的圖象必過定點(  )
A.(0,2)B.(0,3)C.(2,2)D.(2,3)

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知函數(shù)f(x)=sin6x+cos6x,給出下列4個結(jié)論:
①f(x)的值域為[0,2];
②f(x)的最小正周期為$\frac{π}{2}$;
③f(x)的圖象對稱軸方程為x=$\frac{kπ}{4}$(k∈Z);
④f(x)的圖象對稱中心為($\frac{π}{8}+\frac{kπ}{4}$,$\frac{5}{8}$)(k∈Z)
其中正確結(jié)論的序號是②③④(寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.若sinα,sin2α,sin4α成等比數(shù)列,則cosα的值為( 。
A.1B.0C.-$\frac{1}{2}$D.-$\frac{1}{2}$或1

查看答案和解析>>

科目: 來源: 題型:解答題

18.設(shè)向量$\overrightarrow{a}$=(1,4cosx),b=(4$\sqrt{3}$sinx,1),x∈R.
(1)若$\overrightarrow{a}$與$\overrightarrow$共線,求sin2x;
(2)設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,且f(x)在[0,π]上的值域為[tanα,tanβ],求tan(2α+β).

查看答案和解析>>

科目: 來源: 題型:解答題

17.經(jīng)測定某點處的光照強(qiáng)度與光的強(qiáng)度成正比,與到光源距離的平方成反比,比例常數(shù)為k(k>0),現(xiàn)已知相距3m的A,B兩光源的光的強(qiáng)度分別為a,b,它們連線上任意一點C(異于A,B)處的光照強(qiáng)度y等于兩光源對該處光源強(qiáng)度之和,設(shè)AC=x(m),已知x=1時點C處的光照強(qiáng)度是$\frac{33k}{4}$,x=2時點C處的光照強(qiáng)度是3k.
(1)試將y表示為x的函數(shù),并給出函數(shù)的定義域;
(2)問AB連線上何處光照強(qiáng)度最小,并求出最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

16.設(shè)函數(shù)f(x)=x+cosx,若曲線y=f(x)在點(π,f(π))處的切線方程為y=ax+b,則a+b=0.

查看答案和解析>>

科目: 來源: 題型:解答題

15.設(shè)p:對任意的x∈R,不等式x2-ax+a>0恒成立,q:關(guān)于x的不等式組$\left\{\begin{array}{l}{-1≤x≤a}\\{\frac{x+3}{x-2}≥0}\end{array}\right.$的解集非空,如果“p∧q”為假命題,“p∨q”為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.下列說法正確的是( 。
A.集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分不必要條件
B.“|a|>|b|”是“a2>b2”的必要不充分條件
C.命題“若a∈M,則b∉M”的否命題是“若a∉M,則b∈M”
D.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b都不是奇數(shù)”

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知等差數(shù)列{an}的前n項和為Sn,且a2=2,S5=15,數(shù)列{an}滿足b1=$\frac{1}{2}$,bn+1=$\frac{n+1}{2n}$bn(n∈N*),記數(shù)列{bn}的前n項和為Tn
(1)求數(shù)列{an}的通項an及前n項和Sn;
(2)求數(shù)列{bn}的通項bn及前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

12.有5名同學(xué)參加3門興趣特長類選修課程的學(xué)習(xí).
(1)若要求每位同學(xué)只能選一門課程,求不同選課方法種數(shù);
(2)若要求每位同學(xué)只能選一門課程,其中甲乙兩人選同一門課程,求不同選課方法種數(shù).

查看答案和解析>>

同步練習(xí)冊答案