相關(guān)習(xí)題
 0  231346  231354  231360  231364  231370  231372  231376  231382  231384  231390  231396  231400  231402  231406  231412  231414  231420  231424  231426  231430  231432  231436  231438  231440  231441  231442  231444  231445  231446  231448  231450  231454  231456  231460  231462  231466  231472  231474  231480  231484  231486  231490  231496  231502  231504  231510  231514  231516  231522  231526  231532  231540  266669 

科目: 來源: 題型:解答題

3.已知關(guān)于x的不等式ax2+bx+1>0的解集是-1<x<$\frac{1}{3}$,求a,b的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.f(x)與g(x)表示同一函數(shù)的是( 。
A.f(x)=$\sqrt{{x}^{2}-1}$與g(x)=$\sqrt{x-1}$•$\sqrt{x+1}$B.f(x)=x與g(x)=$\frac{{x}^{3}+x}{{x}^{2}+1}$
C.y=x與y=($\sqrt{x}$)2D.f(x)=$\sqrt{{x}^{2}}$與g(x)=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.如圖所示,已知DE∥BC,EF:BF=2:3,則AD:AB=( 。
A.1:2B.1:3C.2:3D.2:5

查看答案和解析>>

科目: 來源: 題型:解答題

20.設(shè)數(shù)列{an}滿足a1=1,an+1=Aan+$\frac{B}{{a}_{n}}$+C(n∈N*
(Ⅰ)若A=2,B=0,C=1,求證:{an+1}是等比數(shù)列,并求{an}通項(xiàng)公式;
(Ⅱ)若A=1,B=1,C=0
(i)求證:2≤an+12-an2≤3
(ii)求證:$\frac{3n-1}{3n-2}$≤$\frac{{a}_{n+1}}{{a}_{n}}$≤$\frac{2n}{2n-1}$.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知曲線f(x)=axlnx+bx在(1,f(1))處的切線方程為y=x-1.
(1)求函數(shù)f(x)的解析式;
(2)對(duì)?x≥1,不等式f(x)≤m(x2-1)(m>0)恒成立,求實(shí)數(shù)m的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.設(shè)f(x)的零點(diǎn)為x1,函數(shù)g(x)=4x+2x-2的零點(diǎn)為x2,若|x1-x2|<$\frac{1}{4}$,則f(x)可以是( 。
A.f(x)=2x+$\frac{1}{2}$B.f(x)=-x2+x-$\frac{1}{4}$C.f(x)=1-10xD.f(x)=ln(8x-7)

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=ax-x(a>0且a≠1)在(0,+∞)上有兩個(gè)零點(diǎn)x1,x2,且x1<x2
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)λ>0時(shí),若不等式lna>$\frac{1+λ}{λ{(lán)x}_{1}+{x}_{2}}$恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.如圖,網(wǎng)格中的每個(gè)小格均為邊長是1的正方形,已知向量$\overrightarrow a$,$\overrightarrow b$,若$\overrightarrow c$=x$\overrightarrow a$+y$\overrightarrow b$,則x和y的值分別為( 。
A.4和0B.4和1C.$-\frac{4}{5}$和$\frac{8}{5}$D.$\frac{8}{5}$和$-\frac{4}{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知m∈R,直線1:mx-(m2+1)y=4m和圓C:x2+y2-8x+4y+16=0相切,求m的值.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知數(shù)列{an}滿足a1=1,點(diǎn)(an,an+1)在直線y=2x+1上.
(1)求{an}的通項(xiàng)公式
(2)求證:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n}}$<$\frac{5}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案