相關(guān)習(xí)題
 0  231352  231360  231366  231370  231376  231378  231382  231388  231390  231396  231402  231406  231408  231412  231418  231420  231426  231430  231432  231436  231438  231442  231444  231446  231447  231448  231450  231451  231452  231454  231456  231460  231462  231466  231468  231472  231478  231480  231486  231490  231492  231496  231502  231508  231510  231516  231520  231522  231528  231532  231538  231546  266669 

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=exsinx,F(xiàn)(x)=mx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)≥F(x),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=|x+3|-|x-1|.
(1)解不等式f(x)≥0;
(2)若f(x)+2|x-1|≥m對任意的實(shí)數(shù)x均成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.關(guān)于x方程|$\frac{x}{x-1}$|=$\frac{x}{x-1}$的解集為( 。
A.{0}B.{x|x≤0,或x>1}C.{x|0≤x<1}D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知數(shù)列{an}滿足a1=$\frac{71}{8}$,an+1=$\frac{7}{8}$an+1(n∈N*
(1)求證:數(shù)列{an-8}是等比數(shù)列,并求an;
(2)設(shè)bn=(n+1)•(an-8),若bn≤bk對n∈N*恒成立,求正整數(shù)k的值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.在數(shù)列{an}中,a1=3,2a1+3a2+…+nan-1=(n+1)an(n∈N*,n≥2)
(Ⅰ)計(jì)算a2,a3的值,并求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)若存在n∈N*,且n≥2,使得$\frac{{a}_{n}}{{2}^{n}•λ}$≥$\frac{3n}{n-1}$成立,求正實(shí)數(shù)λ的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且an2-4Sn+4n=0(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:$\frac{1}{{a}_{1}^{2}}$+$\frac{1}{{a}_{2}^{2}}$+…+$\frac{1}{{a}_{n}^{2}}$<$\frac{1}{2}$(n∈N*).

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知數(shù)列{an}滿足:0<a1<1,an+1=an-ln(an+1),求證:
(1)0<an+1<an<1;
(2)若a1=$\frac{\sqrt{2}}{2}$,且an+1<$\frac{{a}_{n}^{2}}{2}$,則當(dāng)n≥2時(shí),an<$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知動圓P:(x-a)2+(y-b)2=r2(r>0)被y軸所截的弦長為2,被x軸分成兩段弧,且弧長之比等于$\frac{1}{3}$.
(1)若a=-1,b=1,r=$\sqrt{2}$,求此時(shí)與圓相切且與直線x-2y=0垂直的直線方程.
(2)點(diǎn)P在直線y=2x上的投影為A,求事件“在圓P內(nèi)隨機(jī)地投入一點(diǎn),使這一點(diǎn)恰好在△P0A內(nèi)”的概率的最大值.(其中P(a,b)為圓心)

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知圓C:x2+(y-3)2=6,直線1:mx-y+1=0
(1)若圓C與直線l相交于A,B兩點(diǎn),求弦AB的中點(diǎn)M的軌跡方程.
(2)若曲線C的切線在兩坐標(biāo)軸上有相等的截距,求此切線方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.設(shè)圓O:x2+y2=1,直線l:x+2y-3=0,點(diǎn)A∈l,若圓O上存在點(diǎn)B,使得∠OAB=45°(O為坐標(biāo)原點(diǎn)),則點(diǎn)A的橫坐標(biāo)的最大值為(  )
A.$\frac{1}{5}$B.1C.$\frac{9}{5}$D.$\frac{8}{9}$

查看答案和解析>>

同步練習(xí)冊答案