相關(guān)習(xí)題
 0  231527  231535  231541  231545  231551  231553  231557  231563  231565  231571  231577  231581  231583  231587  231593  231595  231601  231605  231607  231611  231613  231617  231619  231621  231622  231623  231625  231626  231627  231629  231631  231635  231637  231641  231643  231647  231653  231655  231661  231665  231667  231671  231677  231683  231685  231691  231695  231697  231703  231707  231713  231721  266669 

科目: 來源: 題型:選擇題

6.若(1-3x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),則$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$的值為( 。
A.-1B.-2C.2D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知函數(shù)f(x)=(3x+2)ex,f′(x)為f(x)的導(dǎo)函數(shù),則f′(0)的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目: 來源: 題型:選擇題

4.給出下列三個(gè)命題
①離散型隨機(jī)變量X~B(4,0.1),則D(X)=0.36;
②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)非零數(shù)后,則平均值與方差均沒有變化;
③采用系統(tǒng)抽樣法從某班按學(xué)號(hào)抽取5名同學(xué)參加活動(dòng),學(xué)號(hào)為5,16,27,38,49的同學(xué)均被選出,則該班學(xué)生人數(shù)可能為60.
其中正確的命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

3.甲、乙、丙、丁四位同學(xué)站成一排照相留念,則甲、乙不相鄰的排法種數(shù)為(  )
A.6B.12C.18D.24

查看答案和解析>>

科目: 來源: 題型:選擇題

2.某住宅小區(qū)有1500名戶,各戶每月的用電量近似服從正態(tài)分布N(200,100),則月用電量在220度以上的戶數(shù)估計(jì)約為( 。▍⒖紨(shù)據(jù):若隨機(jī)變量X服從正態(tài)分布N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974)
A.17B.23C.34D.46

查看答案和解析>>

科目: 來源: 題型:選擇題

1.對(duì)具有線性相關(guān)關(guān)系的變量x、y,有一組觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,9),其回歸方程為y=$\frac{1}{10}$x+a,且x1+x2+…+x9=10,y1+y2+…+y9=19,則實(shí)數(shù)a的值是(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知集合A={y|y=x2-3x+1,x∈[$\frac{3}{2}$,2]},B={x|x+2m≥0};命題p:x∈A,命題q:x∈B,并且p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

19.甲、乙兩人進(jìn)行射擊比賽,在一輪比賽中,甲、乙各射擊一次,根據(jù)以往資料知,甲擊中8環(huán)、9環(huán)、10環(huán)的概率分別為0.6,0.3,0.1,乙擊中8環(huán)、9環(huán)、10環(huán)的概率分別為0.4,0.4,0.2.設(shè)甲、乙的射擊相互獨(dú)立.求在一輪比賽中甲擊中的環(huán)數(shù)多于乙擊中的環(huán)數(shù)的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知隨機(jī)變量X服從兩點(diǎn)分布,且P(X=1)=0.6,設(shè)ξ=3X-2,那么Eξ=-0.2.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知tan(π+α)=2,求下列各式的值:
(1)$\frac{{2cos(\frac{π}{2}-α)+sin(\frac{π}{2}+α)}}{{sin(π+α)+3sin(\frac{3π}{2}+α)}}$;  
(2)$\frac{1}{{({sinα-3cosα})({cosα-sinα})}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案