相關(guān)習(xí)題
 0  232198  232206  232212  232216  232222  232224  232228  232234  232236  232242  232248  232252  232254  232258  232264  232266  232272  232276  232278  232282  232284  232288  232290  232292  232293  232294  232296  232297  232298  232300  232302  232306  232308  232312  232314  232318  232324  232326  232332  232336  232338  232342  232348  232354  232356  232362  232366  232368  232374  232378  232384  232392  266669 

科目: 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=ax2+ln x.
(1)當(dāng)a=-$\frac{1}{2}$時(shí),求f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)性;
(3)設(shè)函數(shù)g(x)=(2a+1)x,若當(dāng)x∈(1,+∞)時(shí),f(x)<g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知集合A={x|y=lg(4-x2)},B={x∈N|$\sqrt{x}$≤3},則A∩B=( 。
A.(0,2)B.[0,2)C.{0,1}D.{0,2}

查看答案和解析>>

科目: 來源: 題型:填空題

16.如圖,等腰三角形ABC,AB=AC=2,∠BAC=120°.E,F(xiàn)分別為邊AB,AC上的動(dòng)點(diǎn),且滿足$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,其中m,n∈(0,1),m+n=1,M,N分別是EF,BC的中點(diǎn),則|MN|的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

15.某三棱錐的三視圖如圖所示,該三棱錐的體積是12.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=ex-1-$\frac{ax}{x-1}$.
(Ⅰ)若曲線y=f(x)在(2,f(2))處的切線過(0,-1),求a的值;
(Ⅱ)求證:當(dāng)a≤-1時(shí),不等式f(x)•lnx≥0在(0,1)∪(1,+∞)上恒成立.

查看答案和解析>>

科目: 來源: 題型:填空題

13.函數(shù)f(x)=ax+1-2的圖象恒過點(diǎn)A(其中實(shí)數(shù)a滿足a>0且a≠1),若點(diǎn)A在直線mx+ny+2=0上,且mn>0,則$\frac{1}{m}$+$\frac{1}{n}$的最小值是2.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知函數(shù)f(x)=sin x+$\sqrt{3}$cos x,則下列命題正確的個(gè)數(shù)是( 。
①函數(shù)f(x)的最大值為2;        
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對稱;
③函數(shù)f(x)的圖象與函數(shù)h(x)=2sin(x-$\frac{2π}{3}$)的圖象關(guān)于x軸對稱;
④若實(shí)數(shù)m使得方程f(x)=m在[0,2π]上恰好有三個(gè)實(shí)數(shù)解x1,x2,x3,則x1+x2+x3=$\frac{7π}{3}$;
⑤設(shè)函數(shù)g(x)=f(x)+2x,若g(θ-1)+g(θ)+g(θ+1)=-2π,則θ=-$\frac{π}{3}$.
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:填空題

11.定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=2x-x2,則f(0)+f(-1)=-1.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=x+aex(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)x<0,a≤1時(shí),證明:x2+(a+1)x>xf′(x).

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx-$\frac{a(x-1)}{x}$(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求證:?x∈(1,2),不等式$\frac{1}{lnx}$-$\frac{1}{x-1}$<$\frac{1}{2}$恒成立.

查看答案和解析>>

同步練習(xí)冊答案