相關習題
 0  232300  232308  232314  232318  232324  232326  232330  232336  232338  232344  232350  232354  232356  232360  232366  232368  232374  232378  232380  232384  232386  232390  232392  232394  232395  232396  232398  232399  232400  232402  232404  232408  232410  232414  232416  232420  232426  232428  232434  232438  232440  232444  232450  232456  232458  232464  232468  232470  232476  232480  232486  232494  266669 

科目: 來源: 題型:解答題

4.已知函數(shù) f(x)=log3$\frac{2{x}^{2}+bx+c}{{x}^{2}+1}$的值域為[0,1],求b和c的值.

查看答案和解析>>

科目: 來源: 題型:填空題

3.$\root{3}{\sqrt{2}-\sqrt{3}}$$\root{6}{5+2\sqrt{6}}$-$\sqrt{(1-\sqrt{3})^{2}}$=$-\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{ax+b}{{1+{x^2}}}$的定義域為(-1,1),滿足f(-x)=-f(x),且f(${\frac{1}{2}}$)=$\frac{2}{5}$.
(1)求函數(shù)f(x)的解析式;
(2)證明f(x)在(-1,1)上是增函數(shù);
(3)解不等式f(x2-1)+f(x)<0.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{a}{x}$+lnx-1(其中a>0且a為常數(shù))
(1)若曲線y=f(x)在點(3,f(3))處的切線與在點($\frac{3}{2}$,f($\frac{3}{2}$))的切線平行,求實數(shù)a的值;
(2)若函數(shù)f(x)有零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.如圖:已知曲線C1:y=$\sqrt{2x-{x^2}}$,曲線C2和C3是半徑相等且圓心在x軸上的半圓.在曲線C1與x軸所圍成的區(qū)域內任取一點,則所取的點來自于陰影部分的概率為( 。
A.$\frac{3}{7}$B.$\frac{1}{2}$C.$\frac{4}{7}$D.$\frac{5}{8}$

查看答案和解析>>

科目: 來源: 題型:填空題

19.用an表示自然數(shù)n的所有因數(shù)中最大的那個奇數(shù),例如:9的因數(shù)有1,3,9,則a9=9;10的因數(shù)有1,2,5,10,則a10=5,記數(shù)列{an}的前n項和為Sn,則S${\;}_{{2}^{2016}-1}$=$\frac{{{4^{2016}}-1}}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.下列判斷:
(1)從個體編號為1,2,…,1000的總體中抽取一個容量為50的樣本,若采用系統(tǒng)抽樣方法進行抽取,則分段間隔應為20;
(2)已知某種彩票的中獎概率為$\frac{1}{1000}$,那么買1000張這種彩票就一定會中獎(假設該彩票有足夠的張數(shù));
(3)從裝有2個紅球和2個黒球的口袋內任取2個球,恰有1個黒球與恰有2個黒球是互斥但不對立的兩個事件;
(4)設具有線性相關關系的變量的一組數(shù)據(jù)是(1,3),(2,5),(3,6),(6,8),則它們的回歸直線一定過點(3,$\frac{11}{2}$).
其中正確的序號是( 。
A.(1)、(2)、(3)B.(1)、(3)、(4)C.(3)、(4)D.(1)、(3)

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=log2(x+1),當點(x,y)是函數(shù)y=f(x)圖象上的點時,點($\frac{x}{3}$,$\frac{y}{2}$)是函數(shù)y=g(x)圖象上的點.
(1)寫出函數(shù)y=g(x)的表達式;
(2)當g(x)-f(x)≥0時,求x的取值范圍.
(3)若方程f(x)-g(x)-m=0有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)g(x)=x2+(a-1)x+a-2a2,h(x)=(x-1)2,若不等式g(x)>0的解集為集合A,不等式h(x)<1的解集為集合B.
(1)若集合A∩B≠∅,求實數(shù)a的取值范圍.
(2)已知logx[f(x)]-logx[g(x)]=1,且不等式f(x)>0的解集為集合C,若集合C∩B≠∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.函數(shù)f(x)=x2-1對任意x∈[$\frac{3}{2}$,+∞),f($\frac{x}{m}$)-4m2f(x)≤f(x-1)+4f(m)恒成立,實數(shù)m取值范圍( 。
A.(-∞,-$\frac{\sqrt{3}}{2}$]∪[$\frac{\sqrt{3}}{2}$,+∞)B.[-1,$\frac{\sqrt{3}}{2}$]C.[-$\frac{\sqrt{3}}{2}$,2]D.[-$\sqrt{3}$,$\sqrt{3}$]

查看答案和解析>>

同步練習冊答案