相關(guān)習(xí)題
 0  232413  232421  232427  232431  232437  232439  232443  232449  232451  232457  232463  232467  232469  232473  232479  232481  232487  232491  232493  232497  232499  232503  232505  232507  232508  232509  232511  232512  232513  232515  232517  232521  232523  232527  232529  232533  232539  232541  232547  232551  232553  232557  232563  232569  232571  232577  232581  232583  232589  232593  232599  232607  266669 

科目: 來源: 題型:解答題

13.如圖,在平面四邊形ABCD中,AD=2,CD=4,∠D=$\frac{2π}{3}$.
(1)求sin∠CAD的值;
(2)若cos∠BAD=-$\frac{\sqrt{7}}{14}$,cos∠CBA=$\frac{{\sqrt{15}}}{6}$,求BC邊的長.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.在200m高的山頂上,測得山下一塔頂和塔底的俯角分別為45°和60°(山腳和塔底在同一水平面內(nèi)),則塔高為( 。﹎.
A.$\frac{400\sqrt{2}}{3}$B.$\frac{400\sqrt{3}}{3}$C.$\frac{200(3+\sqrt{3})}{3}$D.$\frac{200(3-\sqrt{3})}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.在△ABC中,已知A(4,1)、B(7,5)、C(-4,7),則BC邊的中線AD的長是( 。
A.2$\sqrt{5}$B.3$\sqrt{5}$C.$\frac{5}{2}$$\sqrt{5}$D.$\frac{7}{2}$$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

10.在△ABC中,已知a2=b2+c2-$\sqrt{3}$bc,則角A的大小為( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

9.?dāng)?shù)列2,$\frac{4}{3},\frac{8}{5},\frac{16}{7},\frac{32}{9}$,…的一個(gè)通項(xiàng)公式an等于(  )
A.$\frac{2n}{2n-1}$B.$\frac{2^n}{n}$C.$\frac{2^n}{2n-1}$D.$\frac{2^n}{2n+1}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知a≥1,求證:$\sqrt{a+1}$-$\sqrt{a}$<$\sqrt{a}$-$\sqrt{a-1}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.下列結(jié)論:
(1)函數(shù)y=$\sqrt{{x}^{2}}$和y=($\sqrt{x}$)2是同一函數(shù);
(2)函數(shù)f(x-1)的定義域?yàn)閇1,2],則函數(shù)f(3x2)的定義域?yàn)閇0,$\frac{\sqrt{3}}{3}$];
(3)函數(shù)y=log2(x2+2x-2)的遞增區(qū)間為(-1,+∞);
其中正確的個(gè)數(shù)為(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目: 來源: 題型:選擇題

6.如果f($\frac{1}{x}$)=$\frac{x}{1-x}$,則當(dāng)x≠0且x≠1時(shí),f(x)=( 。
A.$\frac{1}{x}$(x≠0且x≠1)B.$\frac{1}{x-1}$(x≠0且x≠1)C.$\frac{1}{1-x}$(x≠0且x≠1)D.$\frac{1}{x}$-1(x≠0且x≠1)

查看答案和解析>>

科目: 來源: 題型:選擇題

5.在四邊形ABCD中,若$\overrightarrow{AC}=(-2,1),\overrightarrow{BD}$=(2,4),則四邊形ABCD的面積為(  )
A.$2\sqrt{5}$B.$\sqrt{5}$C.5D.10

查看答案和解析>>

科目: 來源: 題型:解答題

4.(1)已知角α終邊上一點(diǎn)P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值.
(2)若sinx=$\frac{m-3}{m+5}$,cosx=$\frac{4-2m}{m+5}$,x∈($\frac{π}{2}$,π),求tanx.

查看答案和解析>>

同步練習(xí)冊答案