相關(guān)習(xí)題
 0  233033  233041  233047  233051  233057  233059  233063  233069  233071  233077  233083  233087  233089  233093  233099  233101  233107  233111  233113  233117  233119  233123  233125  233127  233128  233129  233131  233132  233133  233135  233137  233141  233143  233147  233149  233153  233159  233161  233167  233171  233173  233177  233183  233189  233191  233197  233201  233203  233209  233213  233219  233227  266669 

科目: 來源: 題型:選擇題

19.A,B是△ABC的兩個(gè)內(nèi)角,p:sinAsinB<cosAcosB;q:△ABC是鈍角三角形.則p是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

18.設(shè)i是虛數(shù)單位,集合M={z|iz=1},N={z|z+i=1},則集合M與N中元素的乘積是( 。
A.-1+iB.-1-iC.iD.-i

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,且$\overrightarrow{a}$與$\overrightarrow$夾角為120°求:
(1)($\overrightarrow{a}$-2$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$);
(2)$\overrightarrow{a}$在$\overrightarrow$上的投影;
(3)$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,-2),$\overrightarrow{c}$=$\overrightarrow{a}$+k$\overrightarrow$,$\overrightarrowaqkouie$=$\overrightarrow{a}$-$\overrightarrow$,若$\overrightarrow{c}$⊥$\overrightarrowuooce64$,求實(shí)數(shù)k的值.

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知等比數(shù)列{an}中,a1=3,a4=81,則該數(shù)列的通項(xiàng)an=3n(n∈N*).

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知直線l1:x+2ay-1=0,l2:(a+1)x-ay=0,若l1∥l2,則實(shí)數(shù)a的值為(  )
A.$-\frac{3}{2}$B.0C.$-\frac{3}{2}$或0D.2

查看答案和解析>>

科目: 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$,x∈R,a為常數(shù);
(1)當(dāng)a=1時(shí),判斷f(x)的奇偶性;
(2)求證:f(x)是R上的增函數(shù).

查看答案和解析>>

科目: 來源: 題型:填空題

12.若函數(shù)y=|log22x|在區(qū)間(0,a]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知e是自然對數(shù)的底數(shù),函數(shù)f(x)=ex+x-2的零點(diǎn)為a,函數(shù)g(x)=lnx+x-2的零點(diǎn)為b,則a+b=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

10.下列根式、分?jǐn)?shù)指數(shù)冪的互化中,正確的是( 。
A.-$\sqrt{x}$=(-x)${\;}^{\frac{1}{2}}$B.x${\;}^{-\frac{1}{3}}$=-$\root{3}{x}$
C.($\frac{x}{y}$)${\;}^{-\frac{3}{4}}$=$\root{4}{(\frac{y}{x})^{3}}$(x,y≠0)D.$\root{6}{{y}^{2}}$=y${\;}^{\frac{1}{3}}$

查看答案和解析>>

同步練習(xí)冊答案