相關習題
 0  233322  233330  233336  233340  233346  233348  233352  233358  233360  233366  233372  233376  233378  233382  233388  233390  233396  233400  233402  233406  233408  233412  233414  233416  233417  233418  233420  233421  233422  233424  233426  233430  233432  233436  233438  233442  233448  233450  233456  233460  233462  233466  233472  233478  233480  233486  233490  233492  233498  233502  233508  233516  266669 

科目: 來源: 題型:解答題

20.已知函數(shù)$f(x)=4cos(\frac{2π}{3}-ωx)sinωx-\sqrt{3}$(ω>0,x∈R),且f(x)在y軸右側的第一個最低點的橫坐標為$\frac{π}{12}$.
(Ⅰ)求函數(shù)f(x)的單調減區(qū)間;
(Ⅱ)若α∈[0,π],且f(α)=-1,求α.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)在其定義域(0,+∞),f(2)=1,且對任意正數(shù)x,y都有f(xy)=f(x)+f(y)成立.
(1)求f(8)的值;
(2)若f(x)是定義域內的增函數(shù),解關于x不等式f(x)+f(x-2)≤3.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.若偶函數(shù)y=f(x)對任意實數(shù)x都有f(x+2)=-f(x),且在〔-2,0〕上為單調遞減函數(shù),則(  )
A.$f(\frac{11}{2})>f(\frac{11}{3})>f(\frac{11}{4})$B.$f(\frac{11}{4})>f(\frac{11}{2})>f(\frac{11}{3})$C.$f(\frac{11}{2})>f(\frac{11}{4})>f(\frac{11}{3})$D.$f(\frac{11}{3})>f(\frac{11}{4})>f(\frac{11}{2})$

查看答案和解析>>

科目: 來源: 題型:選擇題

17.下列不等式在(0,+∞)上恒成立的是(  )
A.ex>x+2B.sinx>x
C.lnx<xD.tanx>x(x≠$\frac{π}{2}$+kπ,k∈N)

查看答案和解析>>

科目: 來源: 題型:解答題

16.求下列函數(shù)的定義域
(1)f(x)=$\sqrt{3x+2}$
(2)f(x)=$\sqrt{x+3}+\frac{1}{x+2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.在△ABC中,內角A、B、C的對邊分別是a、b、c,且a2=b2+c2+$\sqrt{3}$bc.求A.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,在橢圓上的所有點到右焦點的距離的最大值為$\sqrt{2}$+1,則橢圓的方程為( 。
A.$\frac{{x}^{2}}{2}$+y2=1B.$\frac{{x}^{2}}{4}$+y2=1C.x2+$\frac{{y}^{2}}{2}$=1D.x2+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目: 來源: 題型:選擇題

13.以橢圓的右焦點F2為圓心作一個圓,使此圓過橢圓的中心,交橢圓于點M、N,若直線MF1(F1為橢圓左焦點)是圓F2的切線,則橢圓的離心率為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$-1D.2-$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.給出如下四個判斷:
①若“p或q”為假命題,則p、q中至多有一個為假命題;
②命題“若a>b,則log2a>log2b”的否命題為“若a≤b,則log2a≤log2b”;
③對命題“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;
④在△ABC中,“sinA>$\frac{\sqrt{3}}{2}$”是“∠A>$\frac{π}{3}$”的充分不必要條件.
其中不正確的判斷的個數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知$\overrightarrow m$=(cosx+$\sqrt{3}sinx$,1),$\overrightarrow n$=(2cosx,a)(x,a∈R,a為常數(shù))
(1)求$y=\overrightarrow m•\overrightarrow n$關于x的函數(shù)關系式y(tǒng)=f(x);
(2)求f(x)的單調遞增區(qū)間;
(3)若$x∈[0,\frac{π}{2}]$上,f(x)的最大值為4,求a的值.

查看答案和解析>>

同步練習冊答案