相關(guān)習(xí)題
 0  233983  233991  233997  234001  234007  234009  234013  234019  234021  234027  234033  234037  234039  234043  234049  234051  234057  234061  234063  234067  234069  234073  234075  234077  234078  234079  234081  234082  234083  234085  234087  234091  234093  234097  234099  234103  234109  234111  234117  234121  234123  234127  234133  234139  234141  234147  234151  234153  234159  234163  234169  234177  266669 

科目: 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,動圓經(jīng)過點M(a-2,0),N(a+2,0),P(0,-2),其中a∈R.
(1)求動圓圓心的軌跡E的方程;
(2)過點P作直線l交軌跡E于不同的兩點A、B,直線OA與直線OB分別交直線y=2于兩點C、D,記△ACD與△BCD的面積分別為S1,S2.求S1+S2的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在四棱臺ABCD-A1B1C1D1中,平面BCC1B1⊥平面ABCD,四邊形ABCD為平行四邊形,四邊形BCC1B1為等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.
(1)求證:BC1⊥平面ACC1;
(2)求直線BC1與平面ADD1A1所成的角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知首項為-6的等差數(shù)列{an}的前7項和為0,等比數(shù)列{bn}滿足b3=a7,|b3-b4|=6.
(1)求數(shù)列{bn}的通項公式;
(2)是否存在正整數(shù)k,使得數(shù)列{$\frac{1}{_{n}}$}的前k項和大于$\sqrt{2}$?并說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知整數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-y>0}\\{2x-y-12<0}\\{\sqrt{2}x+2y-6\sqrt{2}>0}\end{array}\right.$,則z=3x+y的最大值為39.

查看答案和解析>>

科目: 來源: 題型:填空題

8.定義在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的函數(shù)f(x)=1+sinxcos2x,在x=θ時取得最小值,則sinθ=$-\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.若a、b、m∈Z(m>0),且a、b除以m所得的余數(shù)相同,則a、b是m的同余數(shù).已知x=2C${\;}_{2017}^{1}$+22C${\;}_{2017}^{2}$+…+22017C${\;}_{2017}^{2017}$,且x、y是10的同余數(shù),則y的值可以是(  )
A.2012B.2019C.2016D.2013

查看答案和解析>>

科目: 來源: 題型:選擇題

6.若F1、F2是雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左右焦點,M是雙曲線右支上一動點,則$\frac{1}{|M{F}_{2}|}$-$\frac{1}{|M{F}_{1}|}$的最大值為( 。
A.$\frac{3}{4}$B.$\frac{4}{5}$C.1D.$\frac{5}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.若g(x)=x-${∫}_{0}^{1}$g(t)dt-$\frac{3}{2}$,則g(x)=(  )
A.x+1B.x-1C.x-2D.x-$\frac{3}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知棱長都是2的直三棱柱的俯視圖是一個正三角形,則該直三棱柱的主視圖的面積不可能等于( 。
A.4B.2$\sqrt{3}$C.$\frac{19}{5}$D.3$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知函數(shù)f(x)=2cos(ωx+φ)的部分圖象如圖所示,其中ω>0,|φ|<$\frac{π}{2}$,則f($\frac{1}{4}$)的值為( 。
A.-$\sqrt{3}$B.-1C.$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊答案