相關(guān)習(xí)題
 0  234048  234056  234062  234066  234072  234074  234078  234084  234086  234092  234098  234102  234104  234108  234114  234116  234122  234126  234128  234132  234134  234138  234140  234142  234143  234144  234146  234147  234148  234150  234152  234156  234158  234162  234164  234168  234174  234176  234182  234186  234188  234192  234198  234204  234206  234212  234216  234218  234224  234228  234234  234242  266669 

科目: 來(lái)源: 題型:選擇題

5.設(shè)命題p:?x∈R,x2+1>0,則?p為( 。
A.?x0∈R,${x_0}^2+1≤0$B.?x0∈R,${x_0}^2+1>0$C.?x0∈R,${x_0}^2+1<0$D.?x0∈R,${x_0}^2+1≤0$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.P為橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一點(diǎn),F(xiàn)1,F(xiàn)2為左右焦點(diǎn),若∠F1PF2=60°.
(1)求△F1PF2的面積;
(2)求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.北京市為了緩解交通壓力,計(jì)劃在某路段實(shí)施“交通限行”,為調(diào)查公眾對(duì)該路段“交通限行”的態(tài)度,某機(jī)構(gòu)從經(jīng)過該路段的人員中隨機(jī)抽查了80人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理,制成表:
年齡(歲)[15,30)[30,45)[45,60)[60,75)
人數(shù)24261614
贊成人數(shù)1214x3
(1)若經(jīng)過該路段的人員對(duì)“交通限行”的贊成率為0.40,求x的值;
(2)在(1)的條件下,若從年齡在[45,60),[60,75)內(nèi)的兩組贊成“交通限行”的人中在隨機(jī)選取2人進(jìn)行進(jìn)一步的采訪,求選中的2人中至少有1人來(lái)自[60,75)內(nèi)的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.已知某算法的程序框圖如圖所示,若將輸出(x,y)的值依次記(x1,y1),(x2,y2),…(xn,yn),…
(1)若程序運(yùn)行中輸出的一個(gè)數(shù)組是(9,t),求t的值;
(2)程序結(jié)束時(shí),共輸出(x,y)的組數(shù)位多少.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.某天將一枚硬幣連擲了10次,正面朝上的情形出現(xiàn)了6次,若用A表示正面朝上這一事件,則A的( 。
A.概率為$\frac{3}{5}$B.頻率為$\frac{3}{5}$C.頻率為6D.概率接近0.6

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.下列各組數(shù)中最小的數(shù)是( 。
A.1111(2)B.210(6)C.1000(4)D.101(8)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

19.已知兩定點(diǎn)F1(-2,0),F(xiàn)2(2,0),點(diǎn)P是平面上一動(dòng)點(diǎn),且|PF1|+|PF2|=4,則點(diǎn)P的軌跡是(  )
A.B.直線C.橢圓D.線段

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

18.已知α是第三象限角,sinα=-$\frac{1}{3}$,則sin($\frac{7π}{2}$-α)=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.如圖,平面四邊形ABCD中,AB=$\sqrt{5}$,AD=2$\sqrt{2}$,CD=$\sqrt{3}$,∠CBD=30°,∠BCD=120°.
(1)求BD的長(zhǎng);
(2)求∠ADC的度數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

16.設(shè)實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x-y+2≥0\\ 2x-y-4≤0\\ x≥0,y≥0\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則$\frac{3}{a}+\frac{4}$的最小值為$\frac{49}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案