相關(guān)習(xí)題
 0  236398  236406  236412  236416  236422  236424  236428  236434  236436  236442  236448  236452  236454  236458  236464  236466  236472  236476  236478  236482  236484  236488  236490  236492  236493  236494  236496  236497  236498  236500  236502  236506  236508  236512  236514  236518  236524  236526  236532  236536  236538  236542  236548  236554  236556  236562  236566  236568  236574  236578  236584  236592  266669 

科目: 來源: 題型:選擇題

12.設(shè)p:實(shí)數(shù)x,y滿足(x-2)2+(y-2)2≤8,q:實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}y≥x-2\\ y≥2-x\\ y≤2\end{array}\right.$,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:填空題

11.(a+x)5展開式中x2的系數(shù)為80,則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目: 來源: 題型:解答題

10.某同學(xué)用“五點(diǎn)法”畫函數(shù)$f(x)=2sin(2x-\frac{π}{3})+1$在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
2x-$\frac{π}{3}$-$\frac{4π}{3}$-$\frac{π}{2}$0$\frac{π}{2}$$\frac{2π}{3}$
x-$\frac{π}{2}$-$\frac{π}{3}$-$\frac{π}{12}$$\frac{π}{6}$$\frac{5π}{12}$$\frac{π}{2}$
f(x)
(1)請將上表數(shù)據(jù)補(bǔ)充完整,并在給出的直角坐標(biāo)系中,畫出f(x)在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象;
(2)利用函數(shù)的圖象,直接寫出函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

9.寫出命題:“若 x+y=5則 x=3且 y=2”的逆命題、否命題、逆否命題,并判斷它們的真假.

查看答案和解析>>

科目: 來源: 題型:填空題

8.若直線ax+2y-2=0與直線x+(a+1)y+1=0垂直,則a=$-\frac{2}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

7.直線l:5ax-5y-a+3=0(a∈R) 的圖象必過定點(diǎn)($\frac{1}{5},\frac{3}{5}$).

查看答案和解析>>

科目: 來源: 題型:填空題

6.代數(shù)式$1+\frac{1}{{1+\frac{1}{1+…}}}$中省略號(hào)“…”代表以此方式無限重復(fù),因原式是一個(gè)固定值,可以用如下方法求得:令原式=t,則1+$\frac{1}{t}$=t,則t2-t-1=0,取正值得t=$\frac{\sqrt{5}+1}{2}$,用類似方法可得$\sqrt{6+\sqrt{6+\sqrt{6+…}}}$=3.

查看答案和解析>>

科目: 來源: 題型:解答題

5.如圖,在直四棱柱ABCD-A1B1C1D1中(側(cè)棱垂直于底面的四棱柱為直四棱柱),底面四邊形ABCD是直角梯形,其中AB⊥AD,AB=BC=1,且AD=$\sqrt{2}$AA1=2.
(1)求證:平面CDD1C1⊥平面ACD1
(2)求三棱錐A1-ACD1的體積.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知函數(shù)f(x)=alnx+blog2$\frac{1}{x}$,若f(2017)=1,則f($\frac{1}{2017}$)=-1.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.設(shè)全集U={x|x<4,x∈N},A={0,1,2},B={2,3},則B∪(∁UA)等于( 。
A.B.{3}C.{2,3}D.{0,1,2,3}

查看答案和解析>>

同步練習(xí)冊答案