相關習題
 0  236761  236769  236775  236779  236785  236787  236791  236797  236799  236805  236811  236815  236817  236821  236827  236829  236835  236839  236841  236845  236847  236851  236853  236855  236856  236857  236859  236860  236861  236863  236865  236869  236871  236875  236877  236881  236887  236889  236895  236899  236901  236905  236911  236917  236919  236925  236929  236931  236937  236941  236947  236955  266669 

科目: 來源: 題型:解答題

19.某高校共有學生15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(1)應收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12]
①估計該校學生每周平均體育運動時間超過4小時的概率P;
②假設該校每個學生每周平均體育運動時間超過4小時的概率都為P,試求從中任選三人至少有一人每周平均體育運動時間超過4小時的概率
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
男生女生總計
每周平均體育運動時間不超過4小時453075
每周平均體育運動時間超過4小時16560225
總計21090300

查看答案和解析>>

科目: 來源: 題型:填空題

18.若函數(shù)f(x)=x(x-c)2在x=2處有極大值,且對于任意x∈[5,8],f(x)-m≤0恒成立,則實數(shù)m的取值范圍為[32,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

17.在區(qū)間[-2,4]上隨機地取一個數(shù)x,若x滿足x≤m的概率為$\frac{2}{3}$,則m=2.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.設函數(shù)f(x)=ex+3x(x∈R),則f ( x )( 。
A.有最大值B.有最小值C.是增函數(shù)D.是減函數(shù)

查看答案和解析>>

科目: 來源: 題型:選擇題

15.中心在坐標原點,離心率為 $\frac{5}{3}$且實軸長為6的雙曲線的焦點在 x 軸上,則它的漸近線方程是(  )
A.y=±$\frac{5}{4}$xB.y=±$\frac{4}{5}$xC.y=±$\frac{4}{3}$xD.y=±$\frac{3}{4}$x

查看答案和解析>>

科目: 來源: 題型:選擇題

14.“a(a-1)≤0”是“方程x2+x-a=0有實數(shù)根”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

13.在區(qū)間(1,7)上任取一個數(shù),這個數(shù)在區(qū)間(5,8)上的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知$f(x)=\left\{\begin{array}{l}f({x-5}),x≥0\\{log_3}({-x}),x<0\end{array}\right.$,則f(2017)等于1.

查看答案和解析>>

科目: 來源: 題型:填空題

11.等差數(shù)列{an}的前n項和為Sn,若a2=1,a3=2,則S4=6.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D為AC的中點,AB⊥B1D.
(1)求證:平面ABB1A1⊥平面ABC;
(2)在線段CC1(不含端點)上,是否存在點E,使得二面角E-B1D-B的余弦值為$-\frac{{\sqrt{7}}}{14}$?若存在,求出$\frac{CE}{{C{C_1}}}$的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案