相關習題
 0  237218  237226  237232  237236  237242  237244  237248  237254  237256  237262  237268  237272  237274  237278  237284  237286  237292  237296  237298  237302  237304  237308  237310  237312  237313  237314  237316  237317  237318  237320  237322  237326  237328  237332  237334  237338  237344  237346  237352  237356  237358  237362  237368  237374  237376  237382  237386  237388  237394  237398  237404  237412  266669 

科目: 來源: 題型:填空題

3.過點(1,0)作傾斜角為$\frac{3π}{4}$的直線與y2=4x交于A、B,則AB的弦長為.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.下列說法中正確的個數(shù)是( 。
(1)“m為實數(shù)”是“m為有理數(shù)”的充分不必要條件;
(2)“a>b”是“a2>b2”的充要條件;
(3)“x=3”是“x2-2x-3=0”的必要不充分條件;
(4)“A∩B=B”是“A=∅”的必要不充分條件;
(5)“α=kπ+$\frac{5}{12}$π,k∈Z”是“sin2α=$\frac{1}{2}$”的充要條件.
A.0B.2C.1D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

1.命題“存在x0∈R,log2x0<0”的否定是( 。
A.對任意的x∈R,log2x<0B.對任意的x∈R,log2x≥0
C.不存在x∈R,log2x≥0D.存在x0∈R,log2x0≥0

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知向量$\overrightarrow a=(2,sinθ)$與$\overrightarrow b=(cosθ,1)$互相垂直,其中θ∈(0,π).
(Ⅰ)求tanθ的值;
(Ⅱ)若$sin(θ-φ)=\frac{{\sqrt{10}}}{10}$,$\frac{π}{2}<φ<π$,求cosφ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)$f(x)=cos(2x-\frac{π}{3})+2{sin^2}x$.
(Ⅰ)求函數(shù)f(x)的周期、單調遞增區(qū)間;
(Ⅱ)當x∈$[0,\frac{π}{2}]$時,求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.證明:(Ⅰ)$sinαcosβ=\frac{1}{2}[sin(α+β)+sin(α-β)]$
(Ⅱ)$sinα+sinβ=2sin\frac{α+β}{2}cos\frac{α-β}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

17.下面有五個命題:
①終邊在y軸上的角的集合是$\{β|β=2kπ+\frac{π}{2},\;k∈Z\}$;
②若扇形的弧長為4cm,面積為4cm2,則這個扇形的圓心角的弧度數(shù)是2;
③函數(shù)y=cos2($\frac{π}{4}$-x)是奇函數(shù);
④函數(shù)y=4sin(2x-$\frac{π}{3}$)的一個對稱中心是($\frac{π}{6}$,0);
⑤函數(shù)y=tan(-x-π)在$[-π,-\frac{π}{2})$上是增函數(shù).
其中正確命題的序號是②③④(把你認為正確命題的序號都填上).

查看答案和解析>>

科目: 來源: 題型:填空題

16.化簡$\overrightarrow{AC}+\overrightarrow{DB}+\overrightarrow{CD}$=$\overrightarrow{AB}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.若向量$\overrightarrow a=(-1,x)$與$\overrightarrow b=(-x,2)$共線且方向相同,則x的值為( 。
A.$\sqrt{2}$B.$-\sqrt{2}$C.2D.-2

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知向量$\overrightarrow{OM}=(3,-2),\overrightarrow{ON}=(-5,-1),則\overrightarrow{MN}等于$(  )
A.(8,-1)B.(-8,1)C.(-2,-3)D.(-15,2)

查看答案和解析>>

同步練習冊答案