相關(guān)習(xí)題
 0  240847  240855  240861  240865  240871  240873  240877  240883  240885  240891  240897  240901  240903  240907  240913  240915  240921  240925  240927  240931  240933  240937  240939  240941  240942  240943  240945  240946  240947  240949  240951  240955  240957  240961  240963  240967  240973  240975  240981  240985  240987  240991  240997  241003  241005  241011  241015  241017  241023  241027  241033  241041  266669 

科目: 來(lái)源: 題型:選擇題

19.已知點(diǎn)A(2,3),B(m,1),C(n,2),若 $\overrightarrow{AB}$∥$\overrightarrow{BC}$,則m-2n=( 。
A.3B.2C.-2D.1

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.點(diǎn)P(0,2)到直線$\sqrt{3}x+y-4=0$的距離是( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}+tcos\frac{π}{4}\\ y=tsin\frac{π}{4}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為$\frac{{{ρ^2}{{cos}^2}θ}}{4}+{ρ^2}{sin^2}θ=1$.
(1)求曲線C的直角坐標(biāo)方程; 
(2)求直線l與曲線C相交弦AB的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

16.曲線f(x)=2x2+x-2在P0處的切線平行于直線y=5x-1,則點(diǎn)P0坐標(biāo)為(1,1).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.已知$\overrightarrow m=({2cosx+2\sqrt{3}sinx,1}),\overrightarrow n=({cosx,-y})$,且$\overrightarrow m⊥\overrightarrow n$.將y表示為x的函數(shù),若記此函數(shù)為f(x),
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)將f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變),得到函數(shù)g(x)的圖象,求函數(shù)g(x)在x∈[0,π]上的最大值與最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.設(shè)有下面四個(gè)命題
p1:若復(fù)數(shù)z滿足$\frac{1}{z}$∈R,則z∈R;
p2:關(guān)于x的不等式x2-ax+a>0(a∈R)在R上恒成立的充分不必要條件是a<0或a>4;
p3:($\frac{16}{81}$)${\;}^{\frac{1}{4}}$+2lg4+lg$\frac{5}{8}$=$\frac{5}{3}$;
p4:已知函數(shù)y=Asin(ωx+φ)在同一周期內(nèi),當(dāng)x=$\frac{π}{3}$時(shí)有最大值2,當(dāng)x=0時(shí)有最小值-2,那么函數(shù)的解析式為y=2sin(3x+$\frac{π}{2}$).
其中的真命題為( 。
A.p1,p3B.p1,p4C.p2,p3D.p2,p4

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.已知O為坐標(biāo)原點(diǎn),對(duì)于函數(shù)f(x)=asinx+bcosx,稱向量$\overrightarrow{OM}=(a,b)$為函數(shù)f(x)的伴隨向量,同時(shí)稱函數(shù)f(x)為向量$\overrightarrow{OM}$的伴隨函數(shù).
(Ⅰ)設(shè)函數(shù)$g(x)=-sin(\frac{3π}{2}-x)+\sqrt{3}sin(π+x)$,試求g(x)的伴隨向量$\overrightarrow{OM}$;
(Ⅱ)記向量$\overrightarrow{ON}=(1,2)$的伴隨函數(shù)為f(x),求當(dāng)$f(x)=\frac{{4\sqrt{5}}}{5}$且$x∈(0,\frac{π}{2})$時(shí)sinx的值;
(Ⅲ)由(Ⅰ)中函數(shù)g(x)的圖象(縱坐標(biāo)不變)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,再把整個(gè)圖象向右平移$\frac{2π}{3}$個(gè)單位長(zhǎng)度得到h(x)的圖象.已知A(-2,3)B(2,6),問(wèn)在y=h(x)的圖象上是否存在一點(diǎn)P,使得$\overrightarrow{AP}⊥\overrightarrow{BP}$.若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.已知$\overrightarrow a=(1,y)$,$\overrightarrow b=(\frac{1}{2},sin(2x-\frac{π}{6}))$且$\overrightarrow a$∥$\overrightarrow b$,設(shè)函數(shù)y=f(x)
(Ⅰ)求函數(shù)y=f(x)的對(duì)稱軸方程及單調(diào)遞減區(qū)間;
(Ⅱ)若$x∈[{0,\frac{2π}{3}}]$,求函數(shù)y=f(x)的最大值和最小值并寫(xiě)出函數(shù)取最值時(shí)x的值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且3bcosB=acosC+ccosA,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2.
(1)求cosB及△ABC的面積S;
(2)若b=3,且a>c,求sinC的值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=x+$\frac{1}{x-1}$(x>1),則( 。
A.f(x)的最大值為2B.f(x)的最大值為3C.f(x)的最小值為2D.f(x)的最小值為3

查看答案和解析>>

同步練習(xí)冊(cè)答案