相關(guān)習題
 0  252762  252770  252776  252780  252786  252788  252792  252798  252800  252806  252812  252816  252818  252822  252828  252830  252836  252840  252842  252846  252848  252852  252854  252856  252857  252858  252860  252861  252862  252864  252866  252870  252872  252876  252878  252882  252888  252890  252896  252900  252902  252906  252912  252918  252920  252926  252930  252932  252938  252942  252948  252956  266669 

科目: 來源: 題型:填空題

4.用某種型號的鋼板焊接一個長為1m的無蓋長方體容器(接縫忽略不計他),要求其容積為2m3,則至少需要這種型號的鋼板8m2

查看答案和解析>>

科目: 來源: 題型:選擇題

3.在屋內(nèi)墻角處堆放米(如圖,米堆為一個圓錐的四分之一),米堆底部的弧度為8尺,米堆的高為5尺,問米堆的體積和堆放的米各為多少?”已知1斛米的體積約為1.62立方尺,圓周率約為3,估算出堆放斛的米約有( 。
A.14斛B.22斛C.36斛D.66斛

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知△ABC,$AC=BC=\sqrt{2}a$,∠ACB=90°,過點A,B作線段AN,BM分別與△ABC所在的平面垂直,且AN=AB=2BM,E,F(xiàn),P分別是線段NC,AB,MC的中點.
(Ⅰ)求證:EF∥平面MBC;
(Ⅱ)求異面直線AB與ME所成角的余弦值;
(Ⅲ)求四面體PBMF的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

1.坐標系與參數(shù)方程在直角坐標系xOy中,圓C的參數(shù)方程$\left\{\begin{array}{l}{x=1+\sqrt{5}cosφ}\\{y=\sqrt{5}sinφ}\end{array}\right.$(φ為參數(shù)).以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求圓C的極坐標方程;
(Ⅱ)求曲線θ=$\frac{π}{4}$與圓C的交點的極坐標.

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖,在直三棱柱ABC-A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(1)求證:平面ABC1⊥平面A1ACC1;
(2)設(shè)D是線段BB1的中點,求三棱錐D-ABC1的體積.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ-1}\end{array}\right.$(θ為參數(shù)),以原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθ+ρsinθ=1,則直線l截圓C所得的弦長是2$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PD⊥底面ABCD,AB=2AD,∠ADB=90°,
(1)證明PA⊥BD;
(2)設(shè)PD=AD=1,求三棱錐D-PBC的體積.

查看答案和解析>>

科目: 來源: 題型:填空題

17.如圖,四棱錐S-ABCD中,底面ABCD是菱形,其對角線的交點為O,且SA=SC,SA⊥BD.

(1)求證:SO⊥平面ABCD;
(2)設(shè)∠BAD=60°,AB=SD=2,P是側(cè)棱SD上的一點,且SB∥平面APC,求三棱錐A-PCD的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

16.在直角坐標系xOy中,曲線C1:$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=-1+tsinα}\end{array}\right.$(t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=2sinθ,C3:$ρ=2\sqrt{3}cosθ$.
(1)求C2與C3交點的直角坐標;
(2)若C1與C2相交于點A,B,點M(-1,-1),求|MA|•|MB|的值.

查看答案和解析>>

科目: 來源: 題型:填空題

15.直三棱柱ABC-A1B1C1的各條棱長均為2,E為棱CC1的中點,則三棱錐A1-B1C1E的體積為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習冊答案