科目: 來源: 題型:
【題目】有下列說法:①若,
,則
;②若2
=
,
分別表示
的面積,則
;③兩個非零向量
,若|
|=|
|+|
|,則
與
共線且反向;④若
,則存在唯一實(shí)數(shù)
使得
,其中正確的說法個數(shù)為()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】以下是新兵訓(xùn)練時,某炮兵連8周中炮彈對同一目標(biāo)的命中情況的柱狀圖:
(1)計(jì)算該炮兵連這8周中總的命中頻率p0 , 并確定第幾周的命中頻率最高;
(2)以(1)中的p0作為該炮兵連炮兵甲對同一目標(biāo)的命中率,若每次發(fā)射相互獨(dú)立,且炮兵甲發(fā)射3次,記命中的次數(shù)為X,求X的數(shù)學(xué)期望;
(3)以(1)中的p0作為該炮兵連炮兵對同一目標(biāo)的命中率,試問至少要用多少枚這樣的炮彈同時對該目標(biāo)發(fā)射一次,才能使目標(biāo)被擊中的概率超過0.99?(取lg0.4=﹣0.398)
查看答案和解析>>
科目: 來源: 題型:
【題目】2016年6月22日“國際教育信息化大會”在山東青島開幕.為了解哪些人更關(guān)注“國際教育信息化大會”,某機(jī)構(gòu)隨機(jī)抽取了年齡在15—75歲之間的100人進(jìn)行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: .把年齡落在區(qū)間自
和
內(nèi)的人分別稱為“青少年”和“中老年”.
關(guān)注 | 不關(guān)注 | 合計(jì) | |
青少年 | 15 | ||
中老年 | |||
合計(jì) | 50 | 50 | 100 |
(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù);
(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有
的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國際教育信息化大會”;
臨界值表:
附:參考公式
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中
.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題中,正確的命題有__________.
①回歸直線恒過樣本點(diǎn)的中心
,且至少過一個樣本點(diǎn);
②將一組數(shù)據(jù)的每個數(shù)據(jù)都加一個相同的常數(shù)后,方差不變;
③用相關(guān)指數(shù)來刻面回歸效果;表示預(yù)報變量對解釋變量變化的貢獻(xiàn)率,越接近于1,說明模型的擬合效果越好;
④若分類變量和
的隨機(jī)變量
的觀測值
越大,則“
與
相關(guān)”的可信程度越。
⑤.對于自變量和因變量
,當(dāng)
取值一定時,
的取值具有一定的隨機(jī)性,
,
間的這種非確定關(guān)系叫做函數(shù)關(guān)系;
⑥.殘差圖中殘差點(diǎn)比較均勻的地落在水平的帶狀區(qū)域中,說明選用的模型比較合適;
⑦.兩個模型中殘差平方和越小的模型擬合的效果越好.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)早上8點(diǎn)開始上課,若學(xué)生小典與小方均在至
之間到校,且兩人在該時間段的任何時刻到校都是等可能的,則小典比小方至少早5分鐘到校的概率為__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線L經(jīng)過點(diǎn)P(-2,5),且斜率為 .
(1)求直線L的方程.
(2)求與直線L平行,且過點(diǎn)(2,3)的直線方程.
(3)求與直線L垂直,且過點(diǎn)(2,3)的直線方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,g(x)=x2+2ax+1(a為正實(shí)數(shù)),滿足f(0)=g(0);
函數(shù)F(x)=f(x)+g(x)+b定義域?yàn)?/span>D.
(1)求a的值;
(2)若存在x0∈D,使F(x0)=x0成立,求實(shí)數(shù)b的取值范圍;
(3)若n為正整數(shù),證明:<4.
(參考數(shù)據(jù):lg3=0.3010, =0.1342,
=0.0281,
=0.0038)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 數(shù)列{ }的公差為1的等差數(shù)列,且a2=3,a3=5.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an3n , 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目: 來源: 題型:
【題目】在底面是菱形的四棱錐P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,點(diǎn)E為棱PB的中點(diǎn),點(diǎn)F在棱AD上,平面CEF與PA交于點(diǎn)K,且PA=AB=3,AF=2,則點(diǎn)K到平面PBD的距離為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com