相關(guān)習(xí)題
 0  259332  259340  259346  259350  259356  259358  259362  259368  259370  259376  259382  259386  259388  259392  259398  259400  259406  259410  259412  259416  259418  259422  259424  259426  259427  259428  259430  259431  259432  259434  259436  259440  259442  259446  259448  259452  259458  259460  259466  259470  259472  259476  259482  259488  259490  259496  259500  259502  259508  259512  259518  259526  266669 

科目: 來源: 題型:

【題目】已知雙曲線ba0),O為坐標(biāo)原點(diǎn),離心率,點(diǎn)在雙曲線上.

1)求雙曲線的方程;

2)若直線與雙曲線交于P、Q兩點(diǎn),且.|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)a∈R,函數(shù)f(x)=x2e1x﹣a(x﹣1).
(1)當(dāng)a=1時(shí),求f(x)在( ,2)內(nèi)的極大值;
(2)設(shè)函數(shù)g(x)=f(x)+a(x﹣1﹣e1x),當(dāng)g(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2)時(shí),總有x2g(x1)≤λf′(x1),求實(shí)數(shù)λ的值.(其中f′(x)是f(x)的導(dǎo)函數(shù).)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)滿足對任意的m,n都有f(m+n)=f(m)+f(n)-1,設(shè)g(x)=f(x)+(a>0,a≠1),g(ln2018)=-2015,則g(ln)=______

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在長方體ABCD—A1B1C1D1中,ADAA11AB2,點(diǎn)E在棱AB上.

)求異面直線D1EA1D所成的角;

)若平面D1EC與平面ECD的夾角大小為45°,求點(diǎn)B到平面D1EC的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)的兩個(gè)焦點(diǎn)為F1、F2 , 且橢圓E過點(diǎn)(0, ),( ,﹣ ),點(diǎn)A是橢圓上位于第一象限的一點(diǎn),且△AF1F2的面積S =
(1)求點(diǎn)A的坐標(biāo);
(2)過點(diǎn)B(3,0)的直線l與橢圓E相交于點(diǎn)P、Q,直線AP、AQ分別與x軸相交于點(diǎn)M、N,點(diǎn)C( ,0),證明:|CM||CN|為定值,并求出該定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為 (t為參數(shù))在極坐標(biāo)系與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸中,曲線C的方程為

(Ⅰ)求曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)曲線C與直線l交于點(diǎn)AB,若點(diǎn)P的坐標(biāo)為(1,1),求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】對于函數(shù)f(x),若a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構(gòu)造三角形函數(shù)”.已知函數(shù)f(x)=是“可構(gòu)造三角形函數(shù)”,則實(shí)數(shù)t的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在單位正方體中,點(diǎn)P在線段上運(yùn)動,給出以下四個(gè)命題:

異面直線間的距離為定值;

三棱錐的體積為定值;

異面直線與直線所成的角為定值;

二面角的大小為定值.

其中真命題有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)及函數(shù)(a,b,c∈R),若a>b>ca+b+c=0.

(1)證明:f(x)的圖像與g(x)的圖像一定有兩個(gè)交點(diǎn);

(2)請用反證法證明:;

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,直角梯形ABCD中,∠ABC=90°,AB=BC=2AD=4,點(diǎn)E、F分別是AB、CD的中點(diǎn),點(diǎn)G在EF上,沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF,如圖2.

(1)當(dāng)AG+GC最小時(shí),求證:BD⊥CG;
(2)當(dāng)2VBADGE=VDGBCF時(shí),求二面角D﹣BG﹣C平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案