相關(guān)習(xí)題
 0  260834  260842  260848  260852  260858  260860  260864  260870  260872  260878  260884  260888  260890  260894  260900  260902  260908  260912  260914  260918  260920  260924  260926  260928  260929  260930  260932  260933  260934  260936  260938  260942  260944  260948  260950  260954  260960  260962  260968  260972  260974  260978  260984  260990  260992  260998  261002  261004  261010  261014  261020  261028  266669 

科目: 來(lái)源: 題型:

【題目】在四棱錐中,底面為平行四邊形, , , 點(diǎn)在底面內(nèi)的射影在線段上,且, 的中點(diǎn), 在線段上,且

(Ⅰ)當(dāng)時(shí),證明:平面平面;

(Ⅱ)當(dāng)平面與平面所成的二面角的正弦值為時(shí),求四棱錐的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng).活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤(pán)一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)2次,所獲得的返券金額是兩次金額之和.

1)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;

2)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為(元).求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為

為參數(shù), 為直線的傾斜角).

(1)寫(xiě)出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線有唯一的公共點(diǎn),求角的大。

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】(本小題滿分12分)已知函數(shù)( 為常數(shù)).

1求函數(shù)在點(diǎn) (,)處的切線方程;

2當(dāng)時(shí),設(shè),若函數(shù)在定義域上存在單調(diào)減區(qū)間,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】為了解甲、乙兩校高三年級(jí)學(xué)生某次期末聯(lián)考地理成績(jī)情況,從這兩學(xué)校中分別隨機(jī)抽取30名高三年級(jí)的地理成績(jī)(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖所示:

(1)若乙校高三年級(jí)每位學(xué)生被抽取的概率為0.15,求乙校高三年級(jí)學(xué)生總?cè)藬?shù);

(2)根據(jù)莖葉圖,分析甲、乙兩校高三年級(jí)學(xué)生在這次聯(lián)考中哪個(gè)學(xué)校地理成績(jī)較好?(不要求計(jì)算,要求寫(xiě)出理由);

(3)從樣本中甲、乙兩校高三年級(jí)學(xué)生地理成績(jī)不及格(低于60分為不及格)的學(xué)生中隨機(jī)抽取2人,求至少抽到一名乙校學(xué)生的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為的正三角形三個(gè)頂點(diǎn)都在球的表面上,且球心到平面的距離為該球半徑的一半,則球的表面積為___________

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),分別求函數(shù)的最小值和的最大值,并證明當(dāng)時(shí), 成立;

(3)令,當(dāng)時(shí),判斷函數(shù)有幾個(gè)不同的零點(diǎn)并證明.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓 的左焦點(diǎn)和上頂點(diǎn)在直線上, 為橢圓上位于軸上方的一點(diǎn)且軸, 為橢圓上不同于的兩點(diǎn),且

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線軸交于點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱柱為長(zhǎng)方體,點(diǎn)上的一點(diǎn).

(1)若的中點(diǎn),當(dāng)為何值時(shí),平面平面;

(2)若 ,當(dāng)時(shí),直線與平面所成角的正弦值是否存在最大值?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】為了增強(qiáng)高考與高中學(xué)習(xí)的關(guān)聯(lián)度,考生總成績(jī)由統(tǒng)一高考的語(yǔ)文、數(shù)學(xué)、外語(yǔ)3個(gè)科目成績(jī)和高中學(xué)業(yè)水平考試3個(gè)科目成績(jī)組成.保持統(tǒng)一高考的語(yǔ)文、數(shù)學(xué)、外語(yǔ)科目不變,分值不變,不分文理科,外語(yǔ)科目提供兩次考試機(jī)會(huì).計(jì)入總成績(jī)的高中學(xué)業(yè)水平考試科目,由考生根據(jù)報(bào)考高校要求和自身特長(zhǎng),在思想政治、歷史、地理、物理、化學(xué)、生物、信息技術(shù)七科目中自主選擇三科.

(1)某高校某專業(yè)要求選考科目物理,考生若要報(bào)考該校該專業(yè),則有多少種選考科目的選擇;

(2)甲、乙、丙三名同學(xué)都選擇了物理、化學(xué)、歷史組合,各學(xué)科成績(jī)達(dá)到二級(jí)的概率都是0.8,且三人約定如果達(dá)到二級(jí)不參加第二次考試,達(dá)不到二級(jí)參加第二次考試,如果設(shè)甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案