科目: 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元。設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(Ⅰ)求k的值及f(x)的表達式。
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。
查看答案和解析>>
科目: 來源: 題型:
【題目】己知函數(shù)
(1)若,,求不等式的解;
(2)對任意,,試確定函數(shù)的最小值(用含,的代數(shù)式表示),若正數(shù)、滿足,則、分別取何值時,有最小值,并求出此最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于正整數(shù)集合(,),如果去掉其中任意一個元素()之后,剩余的所有元素組成的集合都能分為兩個交集為空集的集合,且這兩個集合的所有元素之和相等,就稱集合為“和諧集”.
(1)判斷集合是否為“和諧集”,并說明理由;
(2)求證:集合是“和諧集”;
(3)求證:若集合是“和諧集”,則集合中元素個數(shù)為奇數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線過,傾斜角為,以為極點, 軸在平面直角坐標(biāo)系中,直線,曲線(為參數(shù)),坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求的極坐標(biāo)方程;
(2)若曲線的極坐標(biāo)方程為,且曲線分別交于點兩點,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)討論函數(shù)的單調(diào)性;
(2)證明:當(dāng)時,函數(shù)有最小值.設(shè)的最小值為,求函數(shù)的值域.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)的圖象過點P(1,2),且在處取得極值
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)求函數(shù)在上的最值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知是滿足下述條件的所有函數(shù)組成的集合:對于函數(shù)定義域內(nèi)的任意兩個自變量、,均有成立.
(1)已知定義域為的函數(shù),求實數(shù)、的取值范圍;
(2)設(shè)定義域為的函數(shù),且,求正實數(shù)的取值范圍;
(3)已知函數(shù)的定義域為,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,橢圓 的左右焦點分別為的、,離心率為;過拋物線焦點的直線交拋物線于、兩點,當(dāng)時, 點在軸上的射影為。連結(jié)并延長分別交于、兩點,連接; 與的面積分別記為, ,設(shè).
(Ⅰ)求橢圓和拋物線的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某儀器經(jīng)過檢驗合格才能出廠,初檢合格率為:若初檢不合格,則需要進行調(diào)試,經(jīng)調(diào)試后再次對其進行檢驗;若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項費用如表:
項目 | 生產(chǎn)成本 | 檢驗費/次 | 調(diào)試費 | 出廠價 |
金額(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每臺儀器能出廠的概率;
(Ⅱ)求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價生產(chǎn)成本檢驗費調(diào)試費);
(Ⅲ)假設(shè)每臺儀器是否合格相互獨立,記為生產(chǎn)兩臺儀器所獲得的利潤,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com