科目: 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,焦距為,點為橢圓上一點,,的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點為橢圓的上頂點,過橢圓內(nèi)一點的直線交橢圓于兩點,若與的面積比為,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,,底面是直角梯形,.
(1)求證:平面;
(2)設(shè)為側(cè)棱上一點,,試確定的值,使得二面角的大小為.
查看答案和解析>>
科目: 來源: 題型:
【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓具有如下性質(zhì):若、是橢圓上關(guān)于原點對稱的兩個點,點是橢圓上的任意一點,當(dāng)直線、的斜率都存在,并記為、時,則與之積是與點位置無關(guān)的定值.試寫出雙曲線具有的類似的性質(zhì),并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(為常數(shù),為自然對數(shù)的底數(shù))的圖象在點處的切線與該函數(shù)的圖象恰好有三個公共點,求實數(shù)的取值范圍是( )
A. B.
C. 或D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若在處取得極值,求在處的切線方程;
(2)討論的單調(diào)性;
(3)若函數(shù)在上無零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機對心肺疾病入院的人進行問卷調(diào)查,得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | |||
女 | |||
合計 |
(1)用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?
(2)在上述抽取的人中選人,求恰好有名女性的概率;
(3)為了研究心肺疾病是否與性別有關(guān),請計算出統(tǒng)計量,你有多大把握認為心肺疾病與性別有關(guān)?
下面的臨界值表供參考:
參考公式: ,其中.
查看答案和解析>>
科目: 來源: 題型:
【題目】某電視廠家準(zhǔn)備在五一舉行促銷活動,現(xiàn)在根據(jù)近七年的廣告費與銷售量的數(shù)據(jù)確定此次廣告費支出.廣告費支出x(萬元)和銷售量y(萬臺)的數(shù)據(jù)如下:
(1)若用線性回歸模型擬合y與x的關(guān)系,求出y關(guān)于x的線性回歸方程(其中;參考方程:回歸直線,)
(2)若用模型擬合y與x的關(guān)系,可得回歸方程,經(jīng)計算線性回歸模型和該模型的分別約為0.75和0.88,請用說明選擇哪個回歸模型更好;
(3)已知利潤z與x,y的關(guān)系為z=200y﹣x.根據(jù)(2)的結(jié)果回答:當(dāng)廣告費x=20時,銷售量及利潤的預(yù)報值是多少?(精確到0.01)參考數(shù)據(jù):
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以原點為極點,以軸的非負半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.
(1)若曲線參數(shù)方程為:(為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)若曲線參數(shù)方程為:(為參數(shù)),,且曲線與曲線交點分別為,,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com