相關(guān)習(xí)題
 0  261632  261640  261646  261650  261656  261658  261662  261668  261670  261676  261682  261686  261688  261692  261698  261700  261706  261710  261712  261716  261718  261722  261724  261726  261727  261728  261730  261731  261732  261734  261736  261740  261742  261746  261748  261752  261758  261760  261766  261770  261772  261776  261782  261788  261790  261796  261800  261802  261808  261812  261818  261826  266669 

科目: 來源: 題型:

【題目】已知,命題方程表示焦點在軸上的橢圓,命題方程表示雙曲線.

(1)若命題是真命題,求實數(shù)的范圍;

(2)若命題“”為真命題,“”是假命題,求實數(shù)的范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在用二分法求方程在區(qū)間內(nèi)的近似解時,先將方程變形為,構(gòu)建,然后通過計算以判斷的正負(fù)號,再按步驟取區(qū)間中點值,計算中點的函數(shù)近似值,如此往復(fù)縮小零點所在區(qū)間,計算得部分?jǐn)?shù)據(jù)列表如下:

步驟

區(qū)間左端點

區(qū)間右端點

、中點的值

中點的函數(shù)近似值

1

2

3

2.5

-0.102

2

0.189

3

2.625

0.044

4

2.5

2.625

2.5625

-0.029

5

2.5625

2.625

2.59375

0.008

6

2.5625

2.59375

2.578125

-0.011

7

2.578125

2.59375

2.5859375

-0.001

8

2.5859375

2.59375

2.58984375

0.003

9

2.5859375

2.58984375

2.587890625

0.001

1)判斷的正負(fù)號;

2)請完成上述表格,在空白處填上正確的數(shù)字;

3)若給定的精確度為0.1,則到第幾步驟即可求出近似值?此時近似值為多少?

4)若給定的精確度為0.01,則需要到第幾步驟才可求出近似值?近似值為多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

【答案】(1);.

(2).

【解析】試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標(biāo)方程展開后化簡得直角坐標(biāo)方程.(II)求得兩點的坐標(biāo), 設(shè)點,代入向量,利用三角函數(shù)的值域來求得取值范圍.

試題解析】

(Ⅰ)圓的參數(shù)方程為為參數(shù)).

直線的直角坐標(biāo)方程為.

(Ⅱ)由直線的方程可得點,點.

設(shè)點,則 .

.

由(Ⅰ)知,則 .

因為,所以.

型】解答
結(jié)束】
23

【題目】選修4-5:不等式選講

已知函數(shù), .

(Ⅰ)若對于任意, 都滿足,求的值;

(Ⅱ)若存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)拋物線,點, ,過點的直線交于, 兩點.

1)當(dāng)軸垂直時,求直線的方程;

2)證明:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng)時,總有

1)判斷函數(shù)[-1,1]上的單調(diào)性,并證明你的結(jié)論;

2)解不等式:;

3)若對所有的恒成立,其中是常數(shù)),求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中

(1)討論函數(shù)零點的個數(shù);

(2)若不等式在區(qū)間)上的解集為非空集合,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)上有最大值,求實數(shù)的值;

(2)若方程上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時, ;當(dāng)時, .

【解析】試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.

試題解析】

(Ⅰ)

設(shè) ,則.

, ,∴上單調(diào)遞增,

從而得上單調(diào)遞增,又∵,

∴當(dāng)時, ,當(dāng)時, ,

因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

由此可知.

, ,

.

設(shè),

.

∵當(dāng)時, ,∴上單調(diào)遞增.

又∵,∴當(dāng)時, ;當(dāng)時, .

①當(dāng)時, ,即,這時,

②當(dāng)時, ,即,這時, .

綜上, 上的最大值為:當(dāng)時, ;

當(dāng)時, .

[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.

型】解答
結(jié)束】
22

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù)fx=,若對任意給定的m∈(1,+∞),都存在唯一的x0R滿足ffx0))=2a2m2+am,則正實數(shù)a的取值范圍為( 。

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)內(nèi)的單調(diào)性;

(Ⅱ)若存在正數(shù),對于任意的,不等式恒成立,求正實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案