科目: 來(lái)源: 題型:
【題目】提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),在點(diǎn)處的切線方程為,求(1)實(shí)數(shù)的值;(2)函數(shù)的單調(diào)區(qū)間以及在區(qū)間上的最值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值點(diǎn);
(2)當(dāng)時(shí),證明:在上恒成立.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知點(diǎn),橢圓的離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).
(1)求的方程;
(2)設(shè)過(guò)點(diǎn)的動(dòng)直線與相交于兩點(diǎn),問(wèn):是否存在直線,使以為直徑的圓經(jīng)過(guò)原點(diǎn),若存在,求出對(duì)應(yīng)直線的方程,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】現(xiàn)有年齡在25到55歲的一群人身體上的某項(xiàng)數(shù)據(jù),其頻率分布直方圖如下.(注:每組包括左端點(diǎn),不包括右端點(diǎn))
(1)請(qǐng)補(bǔ)全頻率分布直方圖;
(2)估計(jì)年齡的平均數(shù);(精確到小數(shù)點(diǎn)后一位數(shù)字)
(3)若50到55歲的人數(shù)是50,現(xiàn)在想要從25到35歲的人群中用分層抽樣的方法抽取30人,那么25到30歲這一組人中應(yīng)該抽取多少人?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某人在微信群中發(fā)了一個(gè)8元“拼手氣”紅包,被甲、乙、丙三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則甲領(lǐng)到的錢數(shù)不少于其他任何人的概率為
A. B. C. D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某高中三年級(jí)的甲、乙兩個(gè)同學(xué)同時(shí)參加某大學(xué)的自主招生,在申請(qǐng)的材料中提交了某學(xué)科10次的考試成績(jī),記錄如下:
甲:78 86 95 97 88 82 76 89 92 95
乙:73 83 69 82 93 86 79 75 84 99
(1)根據(jù)兩組數(shù)據(jù),作出兩人成績(jī)的莖葉圖,并通過(guò)莖葉圖比較兩人本學(xué)科成績(jī)平均值的大小關(guān)系及方差的大小關(guān)系(不要求計(jì)算具體值,直接寫出結(jié)論即可)
(2)現(xiàn)將兩人的名次分為三個(gè)等級(jí):
成績(jī)分?jǐn)?shù) | |||
等級(jí) | 合格 | 良好 | 優(yōu)秀 |
根據(jù)所給數(shù)據(jù),從甲、乙獲得“優(yōu)秀”的成績(jī)組合中隨機(jī)選取一組,求選中甲同學(xué)成績(jī)高于乙同學(xué)成績(jī)的組合的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】函數(shù)的定義域?yàn)?/span>,且對(duì)任意,有,且當(dāng)時(shí).
(1)證明:是奇函數(shù);
(2)證明:在上是減函數(shù);
(3)求在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.
(1)證明:直線BC∥平面PAD;
(2)若△PCD的面積為2,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.
(1).證明:平面PAB⊥平面PAD;
(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com