科目: 來源: 題型:
【題目】為了適應高考改革,某中學推行“創(chuàng)新課堂”教學.高一平行甲班采用“傳統(tǒng)教學”的教學方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學方式授課,為了比較教學效果,期中考試后,分別從兩個班中各隨機抽取名學生的成績進行統(tǒng)計分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)
分數(shù) | |||||||
甲班頻數(shù) | |||||||
乙班頻數(shù) |
(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認為“成績優(yōu)秀與教學方式有關(guān)”?
甲班 | 乙班 | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
(Ⅱ)現(xiàn)從上述樣本“成績不優(yōu)秀”的學生中,抽取人進行考核,記“成績不優(yōu)秀”的乙班人數(shù)為,求的分布列和期望.
參考公式:,其中.
臨界值表
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,是橢圓的左、右焦點,橢圓過點.
(1)求橢圓的方程;
(2)過點的直線(不過坐標原點)與橢圓交于,兩點,且點在軸上方,點在軸下方,若,求直線的斜率.
查看答案和解析>>
科目: 來源: 題型:
【題目】自出生之日起,人的情緒、體力、智力等心理、生理狀況就呈周期變化,變化由線為.根據(jù)心理學家的統(tǒng)計,人體節(jié)律分為體力節(jié)律、情緒節(jié)律和智力節(jié)律三種.這些節(jié)律的時間周期分別為23天、28天、33天.每個節(jié)律周期又分為高潮期、臨界日和低潮期三個階段.以上三個節(jié)律周期的半數(shù)為臨界日,這就是說11.5天、14天、16.5天分別為體力節(jié)律、情緒節(jié)律和智力節(jié)律的臨界日.臨界日的前半期為高潮期,后半期為低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003年3月20日(每年按365天計算).
(1)請寫出小英的體力、情緒和智力節(jié)律曲線的函數(shù);
(2)試判斷小英在2019年4月22日三種節(jié)律各處于什么階段,當日小英是否適合參加某項體育競技比賽?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線過點.
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)直線與雙曲線C交于A,B兩點,試問:k為何值時,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)
(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(2)是否存在常數(shù),當時,的值域為區(qū)間,且區(qū)間的長度為(視區(qū)間的長度為),如果存在,求出的值;如果不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了適應高考改革,某中學推行“創(chuàng)新課堂”教學.高一平行甲班采用“傳統(tǒng)教學”的教學方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學方式授課,為了比較教學效果,期中考試后,分別從兩個班中各隨機抽取名學生的成績進行統(tǒng)計分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)
分數(shù) | |||||||
甲班頻數(shù) | |||||||
乙班頻數(shù) |
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認為“成績優(yōu)秀與教學方式有關(guān)”?
甲班 | 乙班 | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
(2)在上述樣本中,學校從成績?yōu)?/span>的學生中隨機抽取人進行學習交流,求這人來自同一個班級的概率.
參考公式:,其中.
臨界值表
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等邊三角形的中線與中位線相交于,已知是繞旋轉(zhuǎn)過程中的一個圖形,下列命題中,錯誤的是
A. 恒有⊥
B. 異面直線與不可能垂直
C. 恒有平面⊥平面
D. 動點在平面上的射影在線段上
查看答案和解析>>
科目: 來源: 題型:
【題目】已知遞增數(shù)列{an}前n項和為Sn,且滿足a1=3,4Sn﹣4n+1=an2,設(shè)bn(n∈N*)且數(shù)列{bn}的前n項和為Tn
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列;
(Ⅱ)若對任意的n∈N*,不等式λTnn(﹣1)n+1恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于的不等式,其中;
(1)試求不等式的解集;
(2)對于不等式的解集,記(其中為整數(shù)集),若集合為有限集,求實數(shù)的取值范圍,使得集合中元素個數(shù)最少,并用列舉法表示集合;
查看答案和解析>>
科目: 來源: 題型:
【題目】對任意實數(shù),給出下列命題:①“”是“”的充要條件;②“是無理數(shù)”是“是無理數(shù)”的充要條件;③“”是“”的充分條件;④“”是“”的必要條件;其中真命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com