科目: 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)圖像在點處的切線斜率為時,求的值,并求此時函數(shù)的單調(diào)區(qū)間;
(2)若,為函數(shù)的兩個不同極值點,證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】與正方體ABCD—A1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離相等的點( )
A.有且只有1個B.有且只有2個
C.有且只有3個D.有無數(shù)個
查看答案和解析>>
科目: 來源: 題型:
【題目】近期,長沙市公交公司推出“湘行一卡通”掃碼支付乘車活動,活動設置了一段時間的推廣期,乘客只需利用手機下載“湘行一卡通”,再通過掃碼即可支付乘車費用.相比傳統(tǒng)的支付方式,掃碼支付方式極為便利,吸引了越來越多的人使用掃碼支付,某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如下表所示:
根據(jù)以上數(shù)據(jù),繪制了散點圖.
(1)根據(jù)散點圖判斷,在推廣期內(nèi),與(,均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),建立關于的回歸方程,并預測活動推出第天使用掃碼支付的人次;
(3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如下
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
比例 |
假設該線路公交車票價為元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.根據(jù)給定數(shù)據(jù)以事件發(fā)生的頻率作為相應事件發(fā)生的概率,在不考慮其它因素的條件下,求一名乘客一次乘車的平均費用.參考數(shù)據(jù):
其中:,
參考公式:對于一組數(shù)據(jù),,…,…,,其回歸直線的斜率和截距的最小二乘估計公式分別為: ,.
查看答案和解析>>
科目: 來源: 題型:
【題目】微信運動,是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.用戶可以通過關注微信運動公眾號查看自己每天或每月行走的步數(shù),同時也可以和其他用戶進行運動量的或點贊.加入微信運動后,為了讓自己的步數(shù)能領先于朋友,人們運動的積極性明顯增強,下面是某人2018年1月至2018年11月期間每月跑步的平均里程(單位:十公里)的數(shù)據(jù),繪制了下面的折線圖.
根據(jù)折線圖,下列結(jié)論正確的是( )
A. 月跑步平均里程的中位數(shù)為月份對應的里程數(shù)
B. 月跑步平均里程逐月增加
C. 月跑步平均里程高峰期大致在、月
D. 月至月的月跑步平均里程相對于月至月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.
(1)求線段AB的中點M的軌跡C的方程;
(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(,為自然對數(shù)的底數(shù))
(1)若,求函數(shù)的極值;
(2)若是函數(shù)的一個極值點,試求出關于的關系式(用表示),并確定的單調(diào)區(qū)間;
(3)在(2)的條件下,設,函數(shù).若存在使得成立,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】設橢圓,定義橢圓的“相關圓”方程為.若拋物線的焦點與橢圓的一個焦點重合,且橢圓短軸的一個端點和其兩個焦點構(gòu)成直角三角形.
(1)求橢圓的方程和“相關圓”的方程;
(2)過“相關圓”上任意一點的直線與橢圓交于兩點.為坐標原點,若,證明原點到直線的距離是定值,并求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在坐標軸上,且經(jīng)過、、三點.
(1)求橢圓的方程;
(2)若直線:()與橢圓交于、兩點,證明直線與直線的交點在直線上.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an},{bn}滿足:a1=3,當n≥2時,an﹣1+an=4n;對于任意的正整數(shù)n,.設{bn}的前n項和為Sn.
(1)求數(shù)列{an}及{bn}的通項公式;
(2)求滿足13<Sn<14的n的集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com