已知函數(shù)f(x)=
|lgx|,0<x≤10
-
1
4
x+
7
2
,x>10
,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是( 。
A、(1,10)
B、(10,12)
C、(10,13)
D、(10,14)
考點(diǎn):分段函數(shù)的應(yīng)用
專(zhuān)題:計(jì)算題,數(shù)形結(jié)合,函數(shù)的性質(zhì)及應(yīng)用
分析:畫(huà)出函數(shù)的圖象,根據(jù)f(a)=f(b)=f(c),不妨a<b<c,求出abc=c的范圍即可.
解答: 解:作出函數(shù)f(x)的圖象如圖,
不妨設(shè)a<b<c,
則-lga=lgb=-
1
4
c+
7
2
∈(0,1),
則ab=1,0<-
1
4
c+
7
2
<1,即有10<c<14.
則abc=c∈(10,14).
故選D.
點(diǎn)評(píng):本題主要考查分段函數(shù)、對(duì)數(shù)的運(yùn)算性質(zhì)以及利用數(shù)形結(jié)合解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集為U=R,M={x|x2-x>0},N={x|
x-1
x
<0},則有( 。
A、M∪N=R
B、M∩N=∅
C、∁UN=M
D、∁UN⊆N

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i是虛數(shù)單位,復(fù)數(shù)z=
-1-2i
2-i
+1+2i在復(fù)平面上的對(duì)應(yīng)點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4x
2+4x

(1)證明:y=f(x)的圖象關(guān)于點(diǎn)P(
1
2
,
1
2
)對(duì)稱(chēng);
(2)求f(-100)+f(-99)+…+f(101);
(3)求f(
0
n
)+f(
1
n
)+…+f(
n-1
n
)+f(
n
n
)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|logax|-(
1
2
x(a>0且a≠1)有兩個(gè)零點(diǎn)x1、x2,則有( 。
A、0<x1x2<1
B、x1x2=1
C、x1x2>1
D、x1x2的范圍不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2為雙曲線(xiàn)
x2
5
-
y2
4
=1的左、右焦點(diǎn),P(3,1)為雙曲線(xiàn)內(nèi)一點(diǎn),點(diǎn)A在雙曲線(xiàn)上,則|AP|+|AF2|的最小值為( 。
A、
37
+4
B、
37
-4
C、
37
-2
5
D、
37
+2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=4sin(
2x
3
+
π
6
)-3.
(1)當(dāng)x∈[0,π],求f(x)的值域;
(2)求f(x)的增區(qū)間;
(3)說(shuō)明函數(shù)f(x)=4sin(
2x
3
+
π
6
)-2是由函數(shù)y=sinx的圖象經(jīng)過(guò)怎樣的變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a10=23,a25=-22,Sn為其前n項(xiàng)和
(1)該數(shù)列從第幾項(xiàng)開(kāi)始為負(fù)數(shù);
(2)求Sn
(3)求使Sn<0的最小的正整數(shù)n,
(4)求Tn=|a1|+|a2|+…+|an|的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l2過(guò)A(1,0)、B(0,5),若直線(xiàn)l1與l2的距離是5,則l1的方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案