第六次月考試卷
一.選擇題:
1.D2.C3.A4.A5.B6.A7.B8.C9.B10.C11. B12.C
二.選擇題:
13.3 14.9π 15. -b 16.
三.解答題:
17.(10分)解: ∵∴ 3分
由得,即
當(dāng)時(shí),; 6分 當(dāng)時(shí), 10分
18.(12分)解:(Ⅰ)取PD的中點(diǎn)E,連接AE、EN∵EN平行且等于DC,而DC平行且等于AM ∴AMNE為平行四邊形MN∥AE
∴MN∥平面PAD (6分)
(Ⅱ)∵PA⊥平面ABCD∴CD⊥PA又∵ABCD為矩形∴CD⊥AD∴CD⊥AE,AE∥MN,MN⊥CD (3分)∵AD⊥DC,PD⊥DC ∴∠ADP=45°又E是斜邊的PD的中點(diǎn)∴AE⊥PD,∴MN⊥PD∴MN⊥CD,∴MH⊥平面PCD.(6分)
19.(12分)解:(1)
所以 6分
(2)
因?yàn)?sub>
所以,即
20.(12分) 解:(Ⅰ)由題意知
當(dāng)……………………2分
當(dāng)
兩式相減得整理得: 4分
是以2為首項(xiàng),2為公比的等比數(shù)列. 6分
(Ⅱ)由(Ⅰ)知 1分
①
②
①―②得 9分
…4分 6分
21.(12分)解:(1)由題有,∵是的兩個(gè)極值點(diǎn),∴是方程的兩個(gè)實(shí)根,∵a>0,∴
∴
又∵,∴,即; (6分)
(2)令,則由,由,
故在上是增函數(shù),在區(qū)間上是減函數(shù), ∴,即,∴b的最大值是. (6分)
22.(12分).解:(1)拋物線的準(zhǔn)線,于是,4+=5,∴p=2.
∴拋物線方程為. (4分)
(2)∵點(diǎn)A的坐標(biāo)是(4,4),由題意得B(0,4),M(0,2).又∵F(1,0), ∴.又MN⊥FA,∴,則FA的方程為MN的方程為,解方程組 得, ∴N (4分)
(3)由題意得,圓M的圓心是點(diǎn)(0,2),半徑為2.
當(dāng)m=4時(shí),直線AK的方程為x=4,此時(shí),直線AK與圓M相離.
當(dāng)時(shí),直線AK的方程為即為,
圓心M(0,2)到直線AK的距離,令d>2.解得m>1,
所以,當(dāng)m>1時(shí),直線AK與圓M相離;當(dāng)m=1時(shí),直線AK與圓M相切,
當(dāng)m<1時(shí),直線AK與圓M相交. (4分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com