北京市東城區(qū)2008――2009學年度
高二年級數(shù)學選修課程模塊2-2測試題(理科卷)
一、選擇題:本大題共12小題.每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.
1.計算的結(jié)果是( )
A. B. C. D.
2.拋物線在點處的切線方程是( )
A. B. C. D.
3.在復平面內(nèi),復數(shù)對應的點位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.設(shè)函數(shù),則等于( )
A. B. C. D.
5. 計算的結(jié)果是( )
A. B. C. D.
A. B. C. D.
6B.函數(shù)的極大值為,那么的值是( )
A. B. C. D.
7. 一質(zhì)點做直線運動,由始點經(jīng)過后的距離為,則速度為的時刻是( )
A. B. C.與 D.與
8. 有一段演繹推理是這樣的:“直線平行于平面,則此直線平行于平面內(nèi)的所有直線;已知直線平面,直線平面,直線平面,則直線直線” .結(jié)論顯然是錯誤的,這是因為( )
A.大前提錯誤 B.推理形式錯誤 C.小前提錯誤 D.非以上錯誤
9. 右圖是函數(shù)的導函數(shù)的圖象,
給出下列命題:
①是函數(shù)的極值點;
②是函數(shù)的最小值點;
③在處切線的斜率小于零;
④在區(qū)間上單調(diào)遞增.
則正確命題的序號是( )
A.①② B.①④ C.②③ D.③④
10. 由直線,,曲線及軸所圍成的圖形的面積是( )
A. B. C. D.
11.設(shè)是定義在正整數(shù)集上的函數(shù),且滿足:“當成立時,總可以推出成立”.那么,下列命題總成立的是( )
A.若成立,則當時,均有成立
B.若成立,則當時,均有成立
C.若成立,則當時,均有成立
D.若成立,則當時,均有成立
12.已知數(shù)列滿足,,則( )
A. B. C. D.
二、填空題:本大題共4小題,每小題4分,共16分.將答案填在題中橫線上.
13. 若復數(shù)為純虛數(shù),則實數(shù)____________.
14. 用演繹法證明在區(qū)間為增函數(shù)時的大前提是____________.
15. 在平面,到一條直線的距離等于定長(為正數(shù))的點的集合是與該直線平行的兩條直線.這一結(jié)論推廣到空間則為:在空間,到一個平面的距離等于定長的點的集合是 .
16.曲線在點處的切線與軸、直線所圍成的三角形的面積為__________.
三、解答題:本大題共3小題,共36分. 解答應寫出文字說明、證明過程或演算步驟.
17. (本小題滿分12分)
已知二次函數(shù)在處取得極值,且在點處的切線與直線平行.
(Ⅰ)求的解析式;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間.
設(shè),,.
(Ⅰ)求,,的值;
(Ⅱ)歸納的通項公式,并用數(shù)學歸納法證明.
18B. (本小題滿分12分)
在數(shù)列中,,且,
(Ⅰ)求的值;
(Ⅱ)歸納的通項公式,并用數(shù)學歸納法證明.
已知函數(shù).
(Ⅰ)求的最小值;
(Ⅱ)若對所有都有,求實數(shù)的取值范圍.
19 B. (本小題滿分12分)
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)減區(qū)間;
(Ⅱ)若不等式對一切恒成立,求的取值范圍.
北京市東城區(qū)2008――2009學年度
高二年級數(shù)學選修課程模塊2-2測試題(理科卷)
一、選擇題(本大題共12小題,每小題4分,共48分)
1.B 2.A 3.B 4.A 5.D 6.C
7.C 8.A 9.B 10.D 11.D 12.B
二、填空題(本大題共4小題,每小題4分,共16分)
13. 14.增函數(shù)的定義 15.與該平面平行的兩個平面 16.
三、解答題(本大題共3小題,每小題12分,共36分)
17.(本小題滿分12分)
解:(Ⅰ)由,可得.
由題設(shè)可得 即
解得,.
所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)由題意得,
所以.
令,得,.
所以函數(shù)的單調(diào)遞增區(qū)間為,.┄┄┄┄┄┄┄┄┄┄12分
解:(Ⅰ),
,
.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)根據(jù)計算結(jié)果,可以歸納出 .
當時,,與已知相符,歸納出的公式成立.
假設(shè)當()時,公式成立,即,
那么,.
所以,當時公式也成立.
綜上,對于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄┄12分
18B. (本小題滿分12分)
解:(Ⅰ),因為,
所以,
,解得,
同理.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)根據(jù)計算結(jié)果,可以歸納出 .
當時,,與已知相符,歸納出的公式成立.
假設(shè)當()時,公式成立,即.
由可得,.
即 .
所以.
即當時公式也成立.
綜上,對于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄12分
(Ⅰ)解:的定義域為,
的導數(shù).
令,解得;令,解得.
從而在單調(diào)遞減,在單調(diào)遞增.
所以,當時,取得最小值. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 6分
(Ⅱ)依題意,得在上恒成立,
即不等式對于恒成立.
令,
則.
當時,因為,
故是上的增函數(shù), 所以 的最小值是,
從而的取值范圍是. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分
19B. (本小題滿分12分)
解:(Ⅰ)由于
當時,,
令,可得.
當時,,
可知.
所以函數(shù)的單調(diào)減區(qū)間為. ………………………………………………6分
(Ⅱ)設(shè)
當時,,
令,可得,即;
令,可得.
可得為函數(shù)的單調(diào)增區(qū)間,為函數(shù)的單調(diào)減區(qū)間.
當時,,
所以當時,.
可得為函數(shù)的單調(diào)減區(qū)間.
所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
函數(shù)的最大值為,
要使不等式對一切恒成立,
即對一切恒成立,
又,
可得的取值范圍為. ………………………………………………12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com