題目列表(包括答案和解析)

 0  446229  446237  446243  446247  446253  446255  446259  446265  446267  446273  446279  446283  446285  446289  446295  446297  446303  446307  446309  446313  446315  446319  446321  446323  446324  446325  446327  446328  446329  446331  446333  446337  446339  446343  446345  446349  446355  446357  446363  446367  446369  446373  446379  446385  446387  446393  446397  446399  446405  446409  446415  446423  447348 

5.欲對某商場作一簡要審計,通過檢查發(fā)票及銷售記錄的2%來快速估計每月的銷售總額。現采用如下方法:從某本50張的發(fā)票存根中隨機抽一張,如15號,然后按序往后將65號,115號,165號,…發(fā)票上的銷售額組成一個調查樣本。這種抽取樣本的方法是(   )

A.簡單隨機抽樣   B.系統(tǒng)抽樣    C.分層抽樣     D.其它方式的抽樣

試題詳情

4.雙曲線的漸近線方程是(   )

A.       B.     C.       D.

試題詳情

3.已知的最大值為2,的最大值為,則的取值范圍是(   )

A.      B.      C.       D.以上三種均有可能

試題詳情

2.設,則下列命題為真的是(   )

A.若    B.若     C.若    D.若

試題詳情

1.在函數中,最小正周期為的函數是(   )

A.       B.      C.       D.

試題詳情

20.如圖,設定直線L1:x=-,定點F(,0),其中>0.動直線L2垂直L1與點P,線

   段PF的垂直平分線交L2與點M。

  (1)求點M的軌跡C的方程。

  (2)設點M的軌跡C與x軸交于點Q,在C上是否一定存在另外兩點R、S,使得ΔQRS

     為等邊三角形?若存在,請用表示這個等邊三角形的面積;若不存在,請說明理由。

解:

試題詳情

18.已知數列{an}中,a1=2、(n≥2),bn是方程(an+1)2x2-2(an+1)x+1=0的根;

  (1)探索數列{an}的通項公式并說明理由;

  (2)設函數(nÎN),求的最小值。

解:

  19.如圖,正三棱柱ABC-A1B1C1的底面邊長的3,側棱AA1=D是CB延長線上一點,且BD=BC.

  (Ⅰ)求證:直線BC1//平面AB1D;

  (Ⅱ)求二面角B1-AD-B的大小;

  (Ⅲ)求三棱錐C1-ABB1的體積.

 (Ⅰ)證明:CD//C1B1,又BD=BC=B1C1,

 ∴ 四邊形BDB1C1是平行四邊形, ∴BC1//DB1.

又DB1平面AB1D,BC1平面AB1D,

∴直線BC1//平面AB1D.

  (Ⅱ)解:過B作BE⊥AD于E,連結EB1,

∵B1B⊥平面ABD,∴B1E⊥AD ,

∴∠B1EB是二面角B1-AD-B的平面角,

∵BD=BC=AB,

∴E是AD的中點,

在Rt△B1BE中,

∴∠B1EB=60°。即二面角B1-AD-B的大小為60°

  (Ⅲ)解法一:過A作AF⊥BC于F,∵B1B⊥平面ABC,∴平面ABC⊥平面BB1C1C,

∴AF⊥平面BB1C1C,且AF=

 即三棱錐C1-ABB1的體積為

     解法二:在三棱柱ABC-A1B1C1中,

  即三棱錐C1-ABB1的體積為

試題詳情

17.已知函數

  (Ⅰ)求的最小正周期; (Ⅱ)若,求的最大值、最小值.

(Ⅰ)解:因為

所以的最小正周期

(Ⅱ)解:因為所以時,取得最大值

時,取得最小值-1.

所以上的最大值為1,最小值為-

試題詳情

16. 某班試用電子投票系統(tǒng)選舉班干部候選人.全班k名同學都有選舉權和被選舉權,他們的編號分別為1,2,…,k,規(guī)定:同意按“1”,不同意(含棄權)按“0”,令

     其中i=1,2,…,k,且j=1,2,…,k,則同時同意第1,2號同學當選的人數為(  C  )

   A.

   B.

   C.

   D.

試題詳情

15.已知α,β是平面,m,n是直線.下列命題中正確的是        (  B  )

    A.若m∥n,m⊥α,則n⊥α  B.若m∥α,α∩β=n,則m∥n

   C.若m⊥α,m⊥β,則α∥β D.若m⊥α,,則α⊥β

試題詳情


同步練習冊答案