0  433112  433120  433126  433130  433136  433138  433142  433148  433150  433156  433162  433166  433168  433172  433178  433180  433186  433190  433192  433196  433198  433202  433204  433206  433207  433208  433210  433211  433212  433214  433216  433220  433222  433226  433228  433232  433238  433240  433246  433250  433252  433256  433262  433268  433270  433276  433280  433282  433288  433292  433298  433306  447090 

28. 解:(1)∵D(-8,0),∴B點(diǎn)的橫坐標(biāo)為-8,代入中,得y=-2.

∴B點(diǎn)坐標(biāo)為(-8,-2).而A、B兩點(diǎn)關(guān)于原點(diǎn)對稱,∴A(8,2)

從而k=8×2=16

(2)∵N(0,-n),B是CD的中點(diǎn),A,B,M,E四點(diǎn)均在雙曲線上,

∴mn=k,B(-2m,-),C(-2m,-n),E(-m,-n)

=2mn=2k,mn=k,mn=k.

=k.∴k=4.

由直線及雙曲線,得A(4,1),B(-4,-1)

∴C(-4,-2),M(2,2)

設(shè)直線CM的解析式是,由C、M兩點(diǎn)在這條直線上,得

,解得a=b=

∴直線CM的解析式是y=x+.

(3)如圖,分別作AA1⊥x軸,MM1⊥x軸,垂足分別為A1,M1

設(shè)A點(diǎn)的橫坐標(biāo)為a,則B點(diǎn)的橫坐標(biāo)為-a.于是,

同理

∴p-q==-2

試題詳情

27. 解:(1)由題意:BP=tcm,AQ=2tcm,則CQ=(4-2t)cm,

∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm

∴AP=(5-t)cm,

∵PQ∥BC,∴△APQ∽△ABC,

∴AP∶AB=AQ∶AC,即(5-t)∶5=2t∶4,解得:t=

∴當(dāng)t為秒時,PQ∥BC

………………2分

(2)過點(diǎn)Q作QD⊥AB于點(diǎn)D,則易證△AQD∽△ABC

∴AQ∶QD=AB∶BC

∴2t∶DQ=5∶3,∴DQ=

∴△APQ的面積:×AP×QD=(5-t)×

∴y與t之間的函數(shù)關(guān)系式為:y=

………………5分

(3)由題意:

   當(dāng)面積被平分時有:××3×4,解得:t=

   當(dāng)周長被平分時:(5-t)+2t=t+(4-2t)+3,解得:t=1

∴不存在這樣t的值

………………8分

(4)過點(diǎn)P作PE⊥BC于E

  易證:△PAE∽△ABC,當(dāng)PE=QC時,△PQC為等腰三角形,此時△QCP′為菱形

∵△PAE∽△ABC,∴PE∶PB=AC∶AB,∴PE∶t=4∶5,解得:PE=

∵QC=4-2t,∴2×=4-2t,解得:t=

∴當(dāng)t=時,四邊形PQP′C為菱形

此時,PE=,BE=,∴CE=

………………10分

在Rt△CPE中,根據(jù)勾股定理可知:PC=

∴此菱形的邊長為cm   ………………12分

試題詳情

26. 解:方案一:由題意可得:,

點(diǎn)到甲村的最短距離為.······································································· (1分)

點(diǎn)到乙村的最短距離為

將供水站建在點(diǎn)處時,管道沿鐵路建設(shè)的長度之和最。

即最小值為.········································································ (3分)

方案二:如圖①,作點(diǎn)關(guān)于射線的對稱點(diǎn),則,連接于點(diǎn),則

.·········································································· (4分)

中,

,

,兩點(diǎn)重合.即點(diǎn).············································· (6分)

在線段上任取一點(diǎn),連接,則

,

把供水站建在乙村的點(diǎn)處,管道沿線路鋪設(shè)的長度之和最。

即最小值為.··········· (7分)

方案三:作點(diǎn)關(guān)于射線的對稱點(diǎn),連接,則

于點(diǎn),交于點(diǎn),交于點(diǎn),

為點(diǎn)的最短距離,即

中,,

,兩點(diǎn)重合,即點(diǎn).

中,,.············································· (10分)

在線段上任取一點(diǎn),過于點(diǎn),連接

顯然

把供水站建在甲村的處,管道沿線路鋪設(shè)的長度之和最。

即最小值為.································································ (11分)

綜上,,供水站建在處,所需鋪設(shè)的管道長度最短.········ (12分)

試題詳情

25. 解:(1)取中點(diǎn),聯(lián)結(jié),

的中點(diǎn),,.································· (1分)

,.··········································································· (1分)

,得;······································ (2分)(1分)

(2)由已知得.··································································· (1分)

以線段為直徑的圓與以線段為直徑的圓外切,

,即.·························· (2分)

解得,即線段的長為;······································································· (1分)

(3)由已知,以為頂點(diǎn)的三角形與相似,

又易證得.··············································································· (1分)

由此可知,另一對對應(yīng)角相等有兩種情況:①;②

①當(dāng)時,

,易得.得;······················································· (2分)

②當(dāng)時,,

.又

,即,得

解得,(舍去).即線段的長為2.········································ (2分)

綜上所述,所求線段的長為8或2.

試題詳情

24. 解:(1)∵點(diǎn)上,

,

.

(2)連結(jié), 由題意易知,

.

(3)正方形AEFG在繞A點(diǎn)旋轉(zhuǎn)的過程中,F點(diǎn)的軌跡是以點(diǎn)A為圓心,AF為半徑的圓.

第一種情況:當(dāng)b>2a時,存在最大值及最小值;

因?yàn)?sub>的邊,故當(dāng)F點(diǎn)到BD的距離取得最大、最小值時,取得最大、最小值.

如圖②所示時,

的最大值=

的最小值=

第二種情況:當(dāng)b=2a時,存在最大值,不存在最小值;

的最大值=.(如果答案為4a2b2也可)

 

試題詳情

23. 解(Ⅰ)當(dāng),時,拋物線為,

方程的兩個根為,

∴該拋物線與軸公共點(diǎn)的坐標(biāo)是.  ················································ 2分

(Ⅱ)當(dāng)時,拋物線為,且與軸有公共點(diǎn).

對于方程,判別式≥0,有. ········································ 3分

①當(dāng)時,由方程,解得

此時拋物線為軸只有一個公共點(diǎn).································· 4分

②當(dāng)時,

時,,

時,

由已知時,該拋物線與軸有且只有一個公共點(diǎn),考慮其對稱軸為,

應(yīng)有  即

解得

綜上,.   ················································································ 6分

(Ⅲ)對于二次函數(shù),

由已知時,;時,,

,∴

于是.而,∴,即

.  ············································································································  7分

∵關(guān)于的一元二次方程的判別式

,   

∴拋物線軸有兩個公共點(diǎn),頂點(diǎn)在軸下方.····························· 8分

又該拋物線的對稱軸,

,,

又由已知時,時,,觀察圖象,

可知在范圍內(nèi),該拋物線與軸有兩個公共點(diǎn). ············································ 10分

試題詳情

22. 解:( 1)由已知得:解得

c=3,b=2

∴拋物線的線的解析式為

(2)由頂點(diǎn)坐標(biāo)公式得頂點(diǎn)坐標(biāo)為(1,4)

所以對稱軸為x=1,A,E關(guān)于x=1對稱,所以E(3,0)

設(shè)對稱軸與x軸的交點(diǎn)為F

所以四邊形ABDE的面積=

=

=

=9

(3)相似

如圖,BD=

BE=

DE=

所以, 即: ,所以是直角三角形

所以,且,

所以.

試題詳情

21.解:

(1)m=-5,n=-3

  (2)y=x+2

(3)是定值.

因?yàn)辄c(diǎn)D為∠ACB的平分線,所以可設(shè)點(diǎn)D到邊AC,BC的距離均為h,

設(shè)△ABC AB邊上的高為H,

則利用面積法可得:

(CM+CN)h=MN﹒H

又 H=

化簡可得  (CM+CN)﹒

    

試題詳情

20. 解:(1)如圖,過點(diǎn)B作BD⊥OA于點(diǎn)D.

    在Rt△ABD中,

    ∵∣AB∣=,sin∠OAB=,

    ∴∣BD∣=∣AB∣·sin∠OAB

        =×=3.

又由勾股定理,得

  

     

∴∣OD∣=∣OA∣-∣AD∣=10-6=4.

∵點(diǎn)B在第一象限,∴點(diǎn)B的坐標(biāo)為(4,3).             ……3分

設(shè)經(jīng)過O(0,0)、C(4,-3)、A(10,0)三點(diǎn)的拋物線的函數(shù)表達(dá)式為

   y=ax2+bx(a≠0).

∴經(jīng)過O、C、A三點(diǎn)的拋物線的函數(shù)表達(dá)式為       ……2分

(2)假設(shè)在(1)中的拋物線上存在點(diǎn)P,使以P、O、C、A為頂點(diǎn)的四邊形為梯形

  ①∵點(diǎn)C(4,-3)不是拋物線的頂點(diǎn),

∴過點(diǎn)C做直線OA的平行線與拋物線交于點(diǎn)P1  .

則直線CP1的函數(shù)表達(dá)式為y=-3.

對于,令y=-3x=4或x=6.

而點(diǎn)C(4,-3),∴P1(6,-3).

在四邊形P1AOC中,CP1∥OA,顯然∣CP1∣≠∣OA∣.

∴點(diǎn)P1(6,-3)是符合要求的點(diǎn).                  ……1分

②若AP2∥CO.設(shè)直線CO的函數(shù)表達(dá)式為

  將點(diǎn)C(4,-3)代入,得

∴直線CO的函數(shù)表達(dá)式為

  于是可設(shè)直線AP2的函數(shù)表達(dá)式為

將點(diǎn)A(10,0)代入,得

∴直線AP2的函數(shù)表達(dá)式為

,即(x-10)(x+6)=0.

而點(diǎn)A(10,0),∴P2(-6,12).

過點(diǎn)P2作P2E⊥x軸于點(diǎn)E,則∣P2E∣=12.

在Rt△AP2E中,由勾股定理,得

而∣CO∣=∣OB∣=5.

∴在四邊形P2OCA中,AP2∥CO,但∣AP2∣≠∣CO∣.

∴點(diǎn)P2(-6,12)是符合要求的點(diǎn).                    ……1分

③若OP3∥CA,設(shè)直線CA的函數(shù)表達(dá)式為y=k2x+b2

  將點(diǎn)A(10,0)、C(4,-3)代入,得

∴直線CA的函數(shù)表達(dá)式為

∴直線OP3的函數(shù)表達(dá)式為

即x(x-14)=0.

而點(diǎn)O(0,0),∴P3(14,7).

過點(diǎn)P3作P3E⊥x軸于點(diǎn)E,則∣P3E∣=7.

在Rt△OP3E中,由勾股定理,得

而∣CA∣=∣AB∣=.

∴在四邊形P3OCA中,OP3∥CA,但∣OP3∣≠∣CA∣.

∴點(diǎn)P3(14,7)是符合要求的點(diǎn).                    ……1分

綜上可知,在(1)中的拋物線上存在點(diǎn)P1(6,-3)、P2(-6,12)、P3(14,7),

使以P、O、C、A為頂點(diǎn)的四邊形為梯形.                 ……1分

(3)由題知,拋物線的開口可能向上,也可能向下.

、佼(dāng)拋物線開口向上時,則此拋物線與y軸的副半軸交與點(diǎn)N.

可設(shè)拋物線的函數(shù)表達(dá)式為(a>0).

如圖,過點(diǎn)M作MG⊥x軸于點(diǎn)G.

∵Q(-2k,0)、R(5k,0)、G(、N(0,-10ak2)、M

     

    

                ……2分

②當(dāng)拋物線開口向下時,則此拋物線與y軸的正半軸交于點(diǎn)N,

  同理,可得                     ……1分

綜上所知,的值為3:20.                   ……1分

試題詳情

19. 解:(1)在中,令

,

,····················································· 1分

點(diǎn)

的解析式為···················································································· 2分

(2)由,得  ·························································· 4分

,

····································································································· 5分

······························································································· 6分

(3)過點(diǎn)于點(diǎn)

····································································································· 7分

················································································································ 8分

由直線可得:

中,,,則

,····························································································· 9分

·························································································· 10分

··································································································· 11分

此拋物線開口向下,當(dāng)時,

當(dāng)點(diǎn)運(yùn)動2秒時,的面積達(dá)到最大,最大為.   

試題詳情


同步練習(xí)冊答案