28. 解:(1)∵D(-8,0),∴B點(diǎn)的橫坐標(biāo)為-8,代入中,得y=-2.
∴B點(diǎn)坐標(biāo)為(-8,-2).而A、B兩點(diǎn)關(guān)于原點(diǎn)對稱,∴A(8,2)
從而k=8×2=16
(2)∵N(0,-n),B是CD的中點(diǎn),A,B,M,E四點(diǎn)均在雙曲線上,
∴mn=k,B(-2m,-),C(-2m,-n),E(-m,-n)
=2mn=2k,=mn=k,=mn=k.
∴=――=k.∴k=4.
由直線及雙曲線,得A(4,1),B(-4,-1)
∴C(-4,-2),M(2,2)
設(shè)直線CM的解析式是,由C、M兩點(diǎn)在這條直線上,得
,解得a=b=
∴直線CM的解析式是y=x+.
(3)如圖,分別作AA1⊥x軸,MM1⊥x軸,垂足分別為A1,M1
設(shè)A點(diǎn)的橫坐標(biāo)為a,則B點(diǎn)的橫坐標(biāo)為-a.于是,
同理
∴p-q=-=-2
27. 解:(1)由題意:BP=tcm,AQ=2tcm,則CQ=(4-2t)cm,
∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm
∴AP=(5-t)cm,
∵PQ∥BC,∴△APQ∽△ABC,
∴AP∶AB=AQ∶AC,即(5-t)∶5=2t∶4,解得:t=
∴當(dāng)t為秒時,PQ∥BC
………………2分
(2)過點(diǎn)Q作QD⊥AB于點(diǎn)D,則易證△AQD∽△ABC
∴AQ∶QD=AB∶BC
∴2t∶DQ=5∶3,∴DQ=
∴△APQ的面積:×AP×QD=(5-t)×
∴y與t之間的函數(shù)關(guān)系式為:y=
………………5分
(3)由題意:
當(dāng)面積被平分時有:=××3×4,解得:t=
當(dāng)周長被平分時:(5-t)+2t=t+(4-2t)+3,解得:t=1
∴不存在這樣t的值
………………8分
(4)過點(diǎn)P作PE⊥BC于E
易證:△PAE∽△ABC,當(dāng)PE=QC時,△PQC為等腰三角形,此時△QCP′為菱形
∵△PAE∽△ABC,∴PE∶PB=AC∶AB,∴PE∶t=4∶5,解得:PE=
∵QC=4-2t,∴2×=4-2t,解得:t=
∴當(dāng)t=時,四邊形PQP′C為菱形
此時,PE=,BE=,∴CE=
………………10分
在Rt△CPE中,根據(jù)勾股定理可知:PC===
∴此菱形的邊長為cm ………………12分
26. 解:方案一:由題意可得:,
點(diǎn)到甲村的最短距離為.······································································· (1分)
點(diǎn)到乙村的最短距離為.
將供水站建在點(diǎn)處時,管道沿鐵路建設(shè)的長度之和最。
即最小值為.········································································ (3分)
方案二:如圖①,作點(diǎn)關(guān)于射線的對稱點(diǎn),則,連接交于點(diǎn),則.
,.·········································································· (4分)
在中,
,,
,兩點(diǎn)重合.即過點(diǎn).············································· (6分)
在線段上任取一點(diǎn),連接,則.
,
把供水站建在乙村的點(diǎn)處,管道沿線路鋪設(shè)的長度之和最。
即最小值為.··········· (7分)
方案三:作點(diǎn)關(guān)于射線的對稱點(diǎn),連接,則.
作于點(diǎn),交于點(diǎn),交于點(diǎn),
為點(diǎn)到的最短距離,即.
在中,,,
..
,兩點(diǎn)重合,即過點(diǎn).
在中,,.············································· (10分)
在線段上任取一點(diǎn),過作于點(diǎn),連接.
顯然.
把供水站建在甲村的處,管道沿線路鋪設(shè)的長度之和最。
即最小值為.································································ (11分)
綜上,,供水站建在處,所需鋪設(shè)的管道長度最短.········ (12分)
25. 解:(1)取中點(diǎn),聯(lián)結(jié),
為的中點(diǎn),,.································· (1分)
又,.··········································································· (1分)
,得;······································ (2分)(1分)
(2)由已知得.··································································· (1分)
以線段為直徑的圓與以線段為直徑的圓外切,
,即.·························· (2分)
解得,即線段的長為;······································································· (1分)
(3)由已知,以為頂點(diǎn)的三角形與相似,
又易證得.··············································································· (1分)
由此可知,另一對對應(yīng)角相等有兩種情況:①;②.
①當(dāng)時,,..
,易得.得;······················································· (2分)
②當(dāng)時,,.
.又,.
,即,得.
解得,(舍去).即線段的長為2.········································ (2分)
綜上所述,所求線段的長為8或2.
24. 解:(1)∵點(diǎn)在上,
∴,
∴,
∴.
(2)連結(jié), 由題意易知,
∴.
(3)正方形AEFG在繞A點(diǎn)旋轉(zhuǎn)的過程中,F點(diǎn)的軌跡是以點(diǎn)A為圓心,AF為半徑的圓.
第一種情況:當(dāng)b>2a時,存在最大值及最小值;
因?yàn)?sub>的邊,故當(dāng)F點(diǎn)到BD的距離取得最大、最小值時,取得最大、最小值.
如圖②所示時,
的最大值=
的最小值=
第二種情況:當(dāng)b=2a時,存在最大值,不存在最小值;
的最大值=.(如果答案為4a2或b2也可)
23. 解(Ⅰ)當(dāng),時,拋物線為,
方程的兩個根為,.
∴該拋物線與軸公共點(diǎn)的坐標(biāo)是和. ················································ 2分
(Ⅱ)當(dāng)時,拋物線為,且與軸有公共點(diǎn).
對于方程,判別式≥0,有≤. ········································ 3分
①當(dāng)時,由方程,解得.
此時拋物線為與軸只有一個公共點(diǎn).································· 4分
②當(dāng)時,
時,,
時,.
由已知時,該拋物線與軸有且只有一個公共點(diǎn),考慮其對稱軸為,
應(yīng)有 即
解得.
綜上,或. ················································································ 6分
(Ⅲ)對于二次函數(shù),
由已知時,;時,,
又,∴.
于是.而,∴,即.
∴. ············································································································ 7分
∵關(guān)于的一元二次方程的判別式
,
∴拋物線與軸有兩個公共點(diǎn),頂點(diǎn)在軸下方.····························· 8分
又該拋物線的對稱軸,
由,,,
得,
∴.
又由已知時,;時,,觀察圖象,
可知在范圍內(nèi),該拋物線與軸有兩個公共點(diǎn). ············································ 10分
22. 解:( 1)由已知得:解得
c=3,b=2
∴拋物線的線的解析式為
(2)由頂點(diǎn)坐標(biāo)公式得頂點(diǎn)坐標(biāo)為(1,4)
所以對稱軸為x=1,A,E關(guān)于x=1對稱,所以E(3,0)
設(shè)對稱軸與x軸的交點(diǎn)為F
所以四邊形ABDE的面積=
=
=
=9
(3)相似
如圖,BD=
BE=
DE=
所以, 即: ,所以是直角三角形
所以,且,
所以.
21.解:
(1)m=-5,n=-3
(2)y=x+2
(3)是定值.
因?yàn)辄c(diǎn)D為∠ACB的平分線,所以可設(shè)點(diǎn)D到邊AC,BC的距離均為h,
設(shè)△ABC AB邊上的高為H,
則利用面積法可得:
(CM+CN)h=MN﹒H
又 H=
化簡可得 (CM+CN)﹒
故
20. 解:(1)如圖,過點(diǎn)B作BD⊥OA于點(diǎn)D.
在Rt△ABD中,
∵∣AB∣=,sin∠OAB=,
∴∣BD∣=∣AB∣·sin∠OAB
=×=3.
又由勾股定理,得
∴∣OD∣=∣OA∣-∣AD∣=10-6=4.
∵點(diǎn)B在第一象限,∴點(diǎn)B的坐標(biāo)為(4,3). ……3分
設(shè)經(jīng)過O(0,0)、C(4,-3)、A(10,0)三點(diǎn)的拋物線的函數(shù)表達(dá)式為
y=ax2+bx(a≠0).
由
∴經(jīng)過O、C、A三點(diǎn)的拋物線的函數(shù)表達(dá)式為 ……2分
(2)假設(shè)在(1)中的拋物線上存在點(diǎn)P,使以P、O、C、A為頂點(diǎn)的四邊形為梯形
①∵點(diǎn)C(4,-3)不是拋物線的頂點(diǎn),
∴過點(diǎn)C做直線OA的平行線與拋物線交于點(diǎn)P1 .
則直線CP1的函數(shù)表達(dá)式為y=-3.
對于,令y=-3x=4或x=6.
∴
而點(diǎn)C(4,-3),∴P1(6,-3).
在四邊形P1AOC中,CP1∥OA,顯然∣CP1∣≠∣OA∣.
∴點(diǎn)P1(6,-3)是符合要求的點(diǎn). ……1分
②若AP2∥CO.設(shè)直線CO的函數(shù)表達(dá)式為
將點(diǎn)C(4,-3)代入,得
∴直線CO的函數(shù)表達(dá)式為
于是可設(shè)直線AP2的函數(shù)表達(dá)式為
將點(diǎn)A(10,0)代入,得
∴直線AP2的函數(shù)表達(dá)式為
由,即(x-10)(x+6)=0.
∴
而點(diǎn)A(10,0),∴P2(-6,12).
過點(diǎn)P2作P2E⊥x軸于點(diǎn)E,則∣P2E∣=12.
在Rt△AP2E中,由勾股定理,得
而∣CO∣=∣OB∣=5.
∴在四邊形P2OCA中,AP2∥CO,但∣AP2∣≠∣CO∣.
∴點(diǎn)P2(-6,12)是符合要求的點(diǎn). ……1分
③若OP3∥CA,設(shè)直線CA的函數(shù)表達(dá)式為y=k2x+b2
將點(diǎn)A(10,0)、C(4,-3)代入,得
∴直線CA的函數(shù)表達(dá)式為
∴直線OP3的函數(shù)表達(dá)式為
由即x(x-14)=0.
∴
而點(diǎn)O(0,0),∴P3(14,7).
過點(diǎn)P3作P3E⊥x軸于點(diǎn)E,則∣P3E∣=7.
在Rt△OP3E中,由勾股定理,得
而∣CA∣=∣AB∣=.
∴在四邊形P3OCA中,OP3∥CA,但∣OP3∣≠∣CA∣.
∴點(diǎn)P3(14,7)是符合要求的點(diǎn). ……1分
綜上可知,在(1)中的拋物線上存在點(diǎn)P1(6,-3)、P2(-6,12)、P3(14,7),
使以P、O、C、A為頂點(diǎn)的四邊形為梯形. ……1分
(3)由題知,拋物線的開口可能向上,也可能向下.
、佼(dāng)拋物線開口向上時,則此拋物線與y軸的副半軸交與點(diǎn)N.
可設(shè)拋物線的函數(shù)表達(dá)式為(a>0).
即
如圖,過點(diǎn)M作MG⊥x軸于點(diǎn)G.
∵Q(-2k,0)、R(5k,0)、G(、N(0,-10ak2)、M
∴
∴ ……2分
②當(dāng)拋物線開口向下時,則此拋物線與y軸的正半軸交于點(diǎn)N,
同理,可得 ……1分
綜上所知,的值為3:20. ……1分
19. 解:(1)在中,令
,
,····················································· 1分
又點(diǎn)在上
的解析式為···················································································· 2分
(2)由,得 ·························································· 4分
,
,····································································································· 5分
······························································································· 6分
(3)過點(diǎn)作于點(diǎn)
····································································································· 7分
················································································································ 8分
由直線可得:
在中,,,則
,····························································································· 9分
·························································································· 10分
··································································································· 11分
此拋物線開口向下,當(dāng)時,
當(dāng)點(diǎn)運(yùn)動2秒時,的面積達(dá)到最大,最大為.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com