【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.

(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】
(1)解:∵二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),

∴根據(jù)題意,得

解得 ,

∴拋物線的解析式為y=﹣x2+2x+3.


(2)解:由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D點(diǎn)坐標(biāo)為(1,4),

∴CD= = ,

BC= =3 ,

BD= =2

∵CD2+BC2=( 2+(3 2=20,BD2=(2 2=20,

∴CD2+BC2=BD2,

∴△BCD是直角三角形;


(3)解:存在.

y=﹣x2+2x+3對(duì)稱軸為直線x=1.

①若以CD為底邊,則P1D=P1C,

設(shè)P1點(diǎn)坐標(biāo)為(x,y),根據(jù)勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2

因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,

即y=4﹣x.

又P1點(diǎn)(x,y)在拋物線上,

∴4﹣x=﹣x2+2x+3,

即x2﹣3x+1=0,

解得x1= ,x2= <1,應(yīng)舍去,

∴x=

∴y=4﹣x=

即點(diǎn)P1坐標(biāo)為( , ).

②若以CD為一腰,

∵點(diǎn)P2在對(duì)稱軸右側(cè)的拋物線上,由拋物線對(duì)稱性知,點(diǎn)P2與點(diǎn)C關(guān)于直線x=1對(duì)稱,

此時(shí)點(diǎn)P2坐標(biāo)為(2,3).

∴符合條件的點(diǎn)P坐標(biāo)為( , )或(2,3).


【解析】(1)將A(﹣1,0)、B(3,0)代入二次函數(shù)y=ax2+bx﹣3a求得a、b的值即可確定二次函數(shù)的解析式;(2)分別求得線段BC、CD、BD的長,利用勾股定理的逆定理進(jìn)行判定即可;(3)分以CD為底和以CD為腰兩種情況討論.運(yùn)用兩點(diǎn)間距離公式建立起P點(diǎn)橫坐標(biāo)和縱坐標(biāo)之間的關(guān)系,再結(jié)合拋物線解析式即可求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2 ,AD=4,點(diǎn)E是BC邊上一個(gè)動(dòng)點(diǎn),連接AE,作DF⊥AE于點(diǎn)F,當(dāng)BE的長為時(shí),△CDF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.

(1)如圖1,若點(diǎn)O在邊BC上,求證:∠ABC=∠ACB;

(2)如圖2,若點(diǎn)O在△ABC的內(nèi)部,則∠ABC=∠ACB成立嗎?并說明理由;

(3)若點(diǎn)O在△ABC的外部,則∠ABC=∠ACB成立嗎?請(qǐng)畫圖表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦了一次成語知識(shí)競賽,滿分10分,學(xué)生得分均為整數(shù),成績達(dá)到6分及6分以上為合格,達(dá)到9分或10分為優(yōu)秀. 為了解本次大賽的成績,校團(tuán)委隨機(jī)抽取了甲、乙兩組學(xué)生成績作為樣本進(jìn)行統(tǒng)計(jì),繪制了如下統(tǒng)計(jì)圖表:

組別

平均數(shù)

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

6.8

a

3.76

90%

30%

乙組

b

7.5

1.96

80%

20%

1)求出表中ab的值;

2)小英同學(xué)說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上面的表格判斷,小英屬于哪個(gè)組?

3)甲組同學(xué)說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組. 但乙組同學(xué)不同意甲組同學(xué)的說法,認(rèn)為他們組的成績要好于甲組.請(qǐng)你寫出兩條支持乙組同學(xué)觀點(diǎn)的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

如圖,點(diǎn)E,F在BC上,BE=CF,A=D,B=C,AF與DE交于點(diǎn)O.

(1)求證:AB=DC;

(2)試判斷OEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明過程:

如圖所示,直線ADAB,CD分別相交于點(diǎn)A,D,與EC,BF分別相交于點(diǎn)H,G,已知∠1=∠2,∠B=∠C

求證:∠A=∠D

證明:∵∠1=∠2,(已知)∠2=∠AGB   

∴∠1      

ECBF   

∴∠B=∠AEC   

又∵∠B=∠C(已知)

∴∠AEC      

      

∴∠A=∠D   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標(biāo)軸分別交于點(diǎn)E,F(xiàn),與雙曲線y=﹣
(x<0)交于點(diǎn)P(﹣1,n),且F是PE的中點(diǎn).

(1)求直線l的解析式;
(2)若直線x=a與l交于點(diǎn)A,與雙曲線交于點(diǎn)B(不同于A),
①當(dāng)a為何值時(shí),△ABP是以點(diǎn)P為直角頂點(diǎn)的直角三角形?
②當(dāng)a為何值時(shí),PA=PB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本上有這樣一道例題:

例 已知等腰三角形底邊長為a, 底邊上的高的長為h,求作這個(gè)等腰三角.

作法:(1)作線段AB=a,

(2)作線段AB的垂直平分線MN,與AB相交于點(diǎn)D,

(3)在MN上取一點(diǎn)C,使DC=h,

(4)連接AC,BC,則△ABC就是所求作的等腰三角形.

請(qǐng)你思考只要CD垂直平分AB,那么△ABC就是等腰三角形的依據(jù)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長線于點(diǎn)E,BC=6, .求BE的長.

查看答案和解析>>

同步練習(xí)冊答案