【題目】(本題滿分5分)如圖,小明在大樓30米高
(即PH=30米)的窗口P處進行觀測,測得山
坡上A處的俯角為15°,山腳B處的俯角為
60°,已知該山坡的坡度i(即tan∠ABC)為1:
,點P、H、B、C、A在同一個平面上.點
H、B、C在同一條直線上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于 ▲ 度;
(2)求A、B兩點間的距離(結果精確到0.1米,參考數(shù)據(jù):≈1.732).
【答案】解:(1)30。
(2)設過點P的水平線為PQ,則由題意得:
450。
答:A、B兩點間的距離約34.6米。
【解析】
試題(1)根據(jù)俯角以及坡度的定義即可求解;
(2)在直角△PHB中,根據(jù)三角函數(shù)即可求得PB的長,然后在直角△PBA中利用三角函數(shù)即可求解.
試題解析:
(1)∵山坡的坡度i(即tan∠ABC)為1:.
∴tan∠ABC=,
∴∠ABC=30°;
∵從P點望山腳B處的俯角60°,
∴∠PBH=60°,
∴∠ABP=180°﹣30°﹣60°=90°
故答案為:90.
(2)由題意得:∠PBH=60°,
∵∠ABC=30°,
∴∠ABP=90°,
∴△PAB為直角三角形,
又∵∠APB=45°,
在直角△PHB中,PB=PH÷sin∠PBH=45÷ =30(m).
在直角△PBA中,AB=PBtan∠BPA=30≈52.0(m).
故A、B兩點間的距離約為52.0米.
科目:初中數(shù)學 來源: 題型:
【題目】過□ABCD對角線交點O作直線m,分別交直線AB于點E,交直線CD于點F,若AB=4,AE=6,則DF的長是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣2x﹣3經(jīng)過x軸上的A,B兩點,與y軸交于點C,線段BC與拋物線的對稱軸相交于點D,點E為y軸上的一個動點.
(1)求直線BC的函數(shù)解析式,并求出點D的坐標;
(2)設點E的縱坐標為為m,在點E的運動過程中,當△BDE中為鈍角三角形時,求m的取值范圍;
(3)如圖2,連結DE,將射線DE繞點D順時針方向旋轉90°,與拋物線交點為G,連結EG,DG得到Rt△GED.在點E的運動過程中,是否存在這樣的Rt△GED,使得兩直角邊之比為2:1?如果存在,求出此時點G的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一元二次方程中,有著名的韋達定理:對于一元二次方程,如果方程有兩個實數(shù)根,那么(說明:定理成立的條件)。比如方程中,,所以該方程有兩個不等的實數(shù)根,記方程的兩根為,,那么+=, =,請根據(jù)閱讀材料解答下列各題:
(1)已知方程的兩根為、,且 >,求下列各式的值:
① ②
(2)已知是一元二次方程的兩個實數(shù)根.
①是否存在實數(shù),使成立?若存在,求出的值;若不存在,請說明理由.
②求使的值為整數(shù)的實數(shù)的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C,D在⊙O上,且點C是的中點,過點 C作AD的垂線 EF交直線 AD于點 E.
(1)求證:EF是⊙O的切線;
(2)連接BC,若AB=5,BC=3,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖形的操作過程(本題中四個矩形的水平方向的邊長均為a,豎直方向的邊長均b):
●在圖1中,將線段A1A2向右平移1個單位到B1B2,得到封閉圖形A1A2B2B1(即陰影部分);
●在圖2中,將折線A1A2A3向右平移1個單位到B1B2B3,得到封閉圖形A1A2A3B3B2B1(即陰影部分).
(1)在圖3中,請你類似地畫一條有兩個折點的線,同樣向右平移1個單位,從而得到一個封閉圖形,并用斜線畫出陰影;
(2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積:
S1=__________,S2=__________,S3=__________.
(3)聯(lián)想與探索
如上圖,在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個單位),請你猜想空白部分表示的草場地面積是多少?并說明你的猜想是正確的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路上依次有A,C,B三地,甲、乙兩人同時出發(fā),甲從A地騎自行車去B地,途經(jīng)C地休息1分鐘,繼續(xù)按原速騎行至B地,甲到達B地后,立即按原路原速返回A地;乙步行從B地前往A地.甲、乙兩人距A地的路程y(米)與時間x(分)之間的函數(shù)關系如圖所示,請結合圖象解答下列問題:
(1)請寫出甲的騎行速度為 米/分,點M的坐標為 ;
(2)求甲返回時距A地的路程y與時間x之間的函數(shù)關系式(不需要寫出自變量的取值范圍);
(3)請直接寫出兩人出發(fā)后,在甲返回A地之前,經(jīng)過多長時間兩人距C地的路程相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小山坡上有一根垂直于地面的電線桿,小明從地面上的A處測得電線桿頂端點的仰角是45°,后他正對電線桿向前走6米到達B處,測得電線桿頂端點和電線桿底端D點的仰角分別是60°和30°.求電線桿的高度(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直線l上,將△ABC繞點A順時針旋轉到①,可得到點P1;將位置①的三角形繞點P1順時針旋轉到位置②,可得到點P2;將位置②的三角形繞點P2順時針旋轉到位置③,可得到點P3,…按此規(guī)律繼續(xù)旋轉,直到點P2012為止,則AP2012等于_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com