【題目】如圖,在Rt△ABC中,∠A=90°,∠ACB=30°,AC=10,CD是角平分線.
(1)如圖1,若E是AC邊上的一個定點,在CD上找一點P,使PA+PE的值最;
(2)如圖2,若E是AC邊上的一個動點,在CD上找一點P,使PA+PE的值最小,并直接寫出其最小值.
【答案】(1)點P位置見解析;(2)點P位置見解析,5.
【解析】
(1)如圖,過D作DF⊥BC于F,過F作EF⊥AC交CD于P,于是得到結(jié)論;
(2)如圖,過D作DF⊥BC于F,過F作EF⊥AC交CD于P,則此時,PA+PE的值最。PA+PE的最小值=EF,根據(jù)角平分線的性質(zhì)得到DA=DF,即點A與點F關(guān)于CD對稱,根據(jù)直角三角形的性質(zhì)即可得到結(jié)論.
(1)如圖,
過D作DF⊥BC于F,過F作EF⊥AC交CD于P,
則此時,PA+PE的值最;
點P即為所求;
(2)如圖,過D作DF⊥BC于F,過F作EF⊥AC交CD于P,
則此時,PA+PE的值最;
PA+PE的最小值=EF,
∵CD是角平分線,∠BAC=90°,
∴DA=DF,
即點A與點F關(guān)于CD對稱,
∴CF=AC=10,
∵∠ACB=30°,
∴EF=CF=5.
科目:初中數(shù)學 來源: 題型:
【題目】某校對初三學生進行物理、化學實驗操作能力測試.物理、化學各有3個不同的操作實驗題目,物理實驗分別用①、②、③表示,化學實驗分別用a、b、c表示.測試時每名學生每科只操作一個實驗,實驗的題目由學生抽簽確定,第一次抽簽確定物理實驗題目,第二次抽簽確定化學實驗題目.王剛同學對物理的①、②號實驗和化學的b、c號實驗準備得較好.請用畫樹狀圖(或列表)的方法,求王剛同學同時抽到兩科都準備得較好的實驗題目的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道對于一個圖形,通過不同的方法計算圖形的面積可以得到一個數(shù)學等式.
例如:由圖1可得到(a+b)=a+2ab+b.
圖1 圖2 圖3
(1)寫出由圖2所表示的數(shù)學等式:_____________________;寫出由圖3所表示的數(shù)學等式:_____________________;
(2)利用上述結(jié)論,解決下面問題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD,BE分別是∠BAC,∠ABC的角平分線.
(1)若∠C=70°,∠BAC=60°,則∠BED的度數(shù)是 ;若∠BED=50°,則∠C的度數(shù)是 .
(2)探究∠BED與∠C的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y是x的反比例函數(shù),且x=8時,y=12.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)如果自變量x的取值范圍是2≤x≤3,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
小聰在解方程組時,發(fā)現(xiàn)方程組中①和②之間存在一定的關(guān)系,他發(fā)現(xiàn)了一種“整體代換”法,具體解法如下:
解:將方程②變形為:
即
把方程①代入方程③得:解得
把代入方程①得
∴方程組的解是
(1)模仿小聰?shù)慕夥ǎ夥匠探M
(2)已知x,y滿足方程組,解答:
(ⅰ)求的值;
(ⅱ)求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題 ——
(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關(guān)系,并說明理由.
(2)結(jié)論應(yīng)用:
①如圖2,點M、N在反比例函數(shù)y= (k>0)的圖象上,過點M作ME⊥y軸,垂足分別為E,F(xiàn),試證明:MN∥EF;
②若①中的其他條件不變,只改變點M,N的位置如圖3所示,請判斷MN與EF是否平行.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com