【題目】綜合題 ——
(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關(guān)系,并說(shuō)明理由.
(2)結(jié)論應(yīng)用:
①如圖2,點(diǎn)M、N在反比例函數(shù)y= (k>0)的圖象上,過(guò)點(diǎn)M作ME⊥y軸,垂足分別為E,F(xiàn),試證明:MN∥EF;
②若①中的其他條件不變,只改變點(diǎn)M,N的位置如圖3所示,請(qǐng)判斷MN與EF是否平行.
【答案】
(1)解:如圖1,過(guò)點(diǎn)C作⊥AB于G,過(guò)點(diǎn)D作DH⊥AB于H,
∴∠CGA=∠DHB=90°,
∴CG∥DH,
∵△ABC和△ABD的面積相等,
∴CG=DH,
∴四邊形CGHD是平行四邊形、
(2)解:①如圖2,連接MF,NE,
設(shè)M(x1,y1),N(x2,y2),
∵點(diǎn)M,N在反比例函數(shù)y= (k>0)的圖象上,
∴x1y1=k,x2y2=k,
∵M(jìn)E⊥y軸,NF⊥x軸,
∴OE=y1,OF=x2,
∴S△EFM= x1x2= k,S△EFN= x2y2= k,
∴S△EFM=S△EFN,
由(1)中的結(jié)論可知,MN∥EF;
②MN∥EF,理由:如圖3,由(1)中的結(jié)論可知,MN∥EF.
【解析】(1)過(guò)點(diǎn)C作⊥AB于G,過(guò)點(diǎn)D作DH⊥AB于H,根據(jù)△ABC和△ABD的面積相等,去證明CG∥DH,CG=DH即可證得結(jié)論。
(2)連接MF,NE,先證明S△EFM=S△EFN,然后利用(1)的結(jié)論得證。
【考點(diǎn)精析】掌握平行線之間的距離和三角形的面積是解答本題的根本,需要知道兩條平行線的距離:兩條直線平行,從一條直線上的任意一點(diǎn)向另一條直線引垂線,垂線段的長(zhǎng)度,叫做兩條平行線的距離;三角形的面積=1/2×底×高.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊所在平面內(nèi)有點(diǎn)P,且使得,,均為等腰三角形,則符合條件的點(diǎn)P共有______個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,∠ACB=30°,AC=10,CD是角平分線.
(1)如圖1,若E是AC邊上的一個(gè)定點(diǎn),在CD上找一點(diǎn)P,使PA+PE的值最;
(2)如圖2,若E是AC邊上的一個(gè)動(dòng)點(diǎn),在CD上找一點(diǎn)P,使PA+PE的值最小,并直接寫出其最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,點(diǎn)P在y軸上,當(dāng)的值最小時(shí),P的坐標(biāo)是
A. (0,1)B. (0,)C. (0,0)D. (0, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是等邊三角形,.
如圖1,點(diǎn)E為BC上一點(diǎn),點(diǎn)F為AC上一點(diǎn),且,連接AE,BF交于點(diǎn)G,求的度數(shù);
如圖2,點(diǎn)M是BC延長(zhǎng)線上一點(diǎn),,MN交的外角平分線于點(diǎn)N,求的值;
如圖3,過(guò)點(diǎn)A作于點(diǎn)D,點(diǎn)P是直線AD上一點(diǎn),以CP為邊,在CP的下方作等邊,連DQ,則DQ的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市公交公司為應(yīng)對(duì)春運(yùn)期間的人流高峰,計(jì)劃購(gòu)買A、B兩種型號(hào)的公交車共10輛,若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬(wàn)元;若購(gòu)買A型公交車2輛,B型公交車3輛,共需650萬(wàn)元,
(1)試問(wèn)該公交公司計(jì)劃購(gòu)買A型和B型公交車每輛各需多少萬(wàn)元?
(2)若該公司預(yù)計(jì)在某條線路上A型和B型公交車每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用W不超過(guò)1200萬(wàn)元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬(wàn)人次,則該公司有哪幾種購(gòu)車方案?哪種購(gòu)車方案的總費(fèi)用W最少?最少總費(fèi)用是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,BF平分∠ABC,交AD于點(diǎn)F,CE平分∠BCD,交AD于點(diǎn)E,AB=7,EF=3,則BC長(zhǎng)為( )
A.9
B.10
C.11
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】化簡(jiǎn)代數(shù)式 ,并判斷當(dāng)x滿足不等式組 時(shí)該代數(shù)式的符號(hào).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在Rt△ABC中,AB=3,AC=4,BC=5,若直線EF垂直平分BC,請(qǐng)你利用尺規(guī)畫出直線EF;
(2)若點(diǎn)P在(1)中BC的垂直平分線EF上,請(qǐng)直接寫出PA+PB的最小值,回答PA+PB取最小值時(shí)點(diǎn)P的位置并在圖中標(biāo)出來(lái);
解:PA+PB的最小值為 ,PA+PB取最小值時(shí)點(diǎn)P的位置是 ;
(3)如圖2,點(diǎn)M,N分別在直線AB兩側(cè),在直線AB上找一點(diǎn)Q,使得∠MQB=∠NQB.要求畫圖,并簡(jiǎn)要敘述確定點(diǎn)Q位置的步驟(無(wú)需尺規(guī)作圖,保留畫圖痕跡,無(wú)需證明)
解:確定點(diǎn)Q位置的簡(jiǎn)要步驟: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com